Skip to main content
Log in

Texture Induced by Molecular Weight Dispersity: Polymorphism within Poly(L-lactic acid) Spherulites

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(L-lactic acid) (PLLA) has drawn much attention due to its excellent medical and pharmaceutical applications for decades. As a semi-crystalline polymer, morphology and crystal structure of PLLA greatly determine its properties. Here, we demonstrate, for PLLA films, a non-conventional texture featuring two types of spherulites emerging in pairs to form a distinct nested structure where a small spherulite (~10 µm) is embedded in a large one (100 µm to 300 µm). In addition to the size, the molecular weight and polymorph are different in the large and small spherulites. Crystallographic α-form and relatively low molecular weight are identified in the large spherulites, while meta-stable α′-form and relatively high molecular weight in the small ones. These differences suggest that the polydisperse PLLA polymers fractionate during film formation and the high-molecular-weight fraction crystallizes into the small spherulites with meta-stable structure because of its complicated polymer entanglement and high viscosity. In contrast, the rest of polymers crystallize into the large spherulites with the thermodynamically stable polymorph. Furthermore, this texture exhibits accelerated PLLA degradation initiated from the small spherulites, which is distinct from the typical PLLA spherulites. Insights provided by this work may lead to new texture-properties relationship associated with polydispersity of molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budyanto, L.; Goh, Y. Q.; Ooi, C. P. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction. J. Mater. Sci. Mater. Med. 2009, 20, 105–111.

    CAS  PubMed  Google Scholar 

  2. Lasprilla, A. J. R.; Martinez, G. A. R.; Lunelli, B. H.; Jardini, A. L.; Filho, R. M. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol. Adv. 2012, 30, 321–328.

    CAS  PubMed  Google Scholar 

  3. Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392.

    CAS  PubMed  Google Scholar 

  4. Li, J.; Ding, J.; Liu, T.; Liu, J. F.; Yan, L.; Chen, X. Poly(lactic acid) controlled drug delivery. In Advanced polymer science. Lorenzo, M. L. D.; Androsch, R., Eds. Springer: Cham, 2017, pp. 109–138.

    Google Scholar 

  5. Matsuda, F.; Sobajima, T.; Irie, S.; Sasaki, T. Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching. Eur. Phys. J. E 2016, 39, 41.

    PubMed  Google Scholar 

  6. Yeh, Y. T.; Woo, E. M. Anatomy into interior lamellar assembly in nuclei-dependent diversified morphologies of poly(L-lactic acid). Macromolecules 2018, 51, 7722–7733.

    CAS  Google Scholar 

  7. Harris, A. M.; Lee, E. C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci. 2008, 107, 2246–2255.

    CAS  Google Scholar 

  8. Li, X. J.; Li, Z. M.; Zhong, G. J.; Li, L. B. Steady-shea-induced isothermal crystallization of poly(L-lactide) (PLLA). J. Macromol. Sci., Phys. 2008, 47, 511–522.

    CAS  Google Scholar 

  9. Tsuji, H.; Mizuno, A.; Ikada, Y. Properties and morphology of poly(L-lactide) III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(L-lactide) film in phosphate-buffered solution. J. Appl. Polym. Sci. 2000, 77, 1452–1464.

    CAS  Google Scholar 

  10. Lee, J. K.; Lee, K. H.; Jin, B. S. Structure development and biodegradability of uniaxially stretched poly(L-lactide). Eur. Polym. J. 2001, 37, 907–914.

    CAS  Google Scholar 

  11. Cocca, M.; Androsch, R.; Righetti, M. C.; Malinconico, M.; Di Lorenzo, M. L. Conformationally disordered crystals and their influence on material properties: the cases of isotactic polypropylene, isotactic poly(L-butene), and poly(L-lactic acid). J. Mol. Struct. 2014, 1078, 114–132.

    CAS  Google Scholar 

  12. Chandran, S.; Baschnagel, J.; Cangialosi, D.; Fukao, K.; Glynos, E.; Janssen, L. M. C.; Müller, M.; Muthukumar, M.; Steiner, U.; Xu, J.; Napolitano, S.; Reiter, G. Processing pathways decide polymer properties at the molecular level. Macromolecules 2019, 22, 7146–7156.

    Google Scholar 

  13. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer 2000, 41, 8909–8919.

    CAS  Google Scholar 

  14. Sasaki, S.; Asakura, T. Helix distortion and crystal structure of the α-form of poly(L-lactide). Macromolecules 2003, 36, 8385–8390.

    CAS  Google Scholar 

  15. Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012–8021.

    CAS  Google Scholar 

  16. Shao, J.; Liu, Y. L.; Xiang, S.; Bian, X. C.; Sun, J. R.; Li, G.; Chen, X. S.; Hou, H. Q. The stereocomplex formation and phase separation of PLLA/PDLA blends with different optical purities and molecular weights. Chinese J. Polym. Sci. 2015, 33, 1713–1720.

    CAS  Google Scholar 

  17. Kalb, B.; Pennings, A. General crystallization behaviour of poly(L-lactic acid). Polymer 1980, 21, 607–612.

    CAS  Google Scholar 

  18. Zhang, J.; Tashiro, K.; Tsuji, H.; Domb, A. J. Disorde-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 2008, 41, 1352–1357.

    CAS  Google Scholar 

  19. Ruan, J. J.; Huang, H. Y.; Huang, Y. F.; Lin, C.; Thierry, A.; Lotz, B.; Su, A. C. Thickening-induced faceting habit change in solution-grown poly(L-lactic acid) crystals. Macromolecules 2010, 43, 2382–2388.

    CAS  Google Scholar 

  20. Sawai, D.; Takahashi, K.; Imamura, T.; Nakamura, K.; Kanamoto, T.; Hyon, S. H. Preparation of oriented β-form poly(L-lactic acid) by solid-state extrusion. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 95–104.

    CAS  Google Scholar 

  21. Androsch, R.; Schick, C.; Di Lorenzo, M. L. Melting of conformationally disordered crystals (α′-phase) of poly(L-lactic acid). Macromol. Chem. Phys. 2014, 215, 1134–1139.

    CAS  Google Scholar 

  22. Su, L.; Zou, J.; Dong, S.; Hao, N.; Xu, H. Influence of different β-nucleation agents on poly(L-lactic acid): structure, morphology, and dynamic mechanical behavior. RSC Adv. 2017, 7, 55364–55370.

    CAS  Google Scholar 

  23. Zhang, H.; Bai, H.; Liu, Z.; Zhang, Q.; Fu, Q. Toward Highperformance poly(L-lactide) fibers via tailoring crystallization with the aid of fibrillar nucleating agent. ACS Sustain. Chen. Eng. 2016, 4, 3939–3947.

    CAS  Google Scholar 

  24. Wang, W.; Qi, H.; Zhou, T.; Mei, S.; Han, L.; Higuchi, T.; Jinnai, H.; Li, C. Y. Highly robust crystalsome via directed polymer crystallization at curved liquid/liquid interface. Nat. Commun. 2016, 7, 10599.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsuji, H.; Miyauchi, S. Poly(L-lactide): VI effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region. Polym. Degrad. Stab. 2001, 71, 415–424.

    CAS  Google Scholar 

  26. Kikkawa, Y.; Abe, H.; Iwata, T.; Inoue, Y.; Doi, Y. Crystallization, stability, and enzymatic degradation of poly(L-lactide) thin film. Biomacromolecules 2002, 3, 350–356.

    CAS  PubMed  Google Scholar 

  27. Fujita, M.; Doi, Y. Annealing and melting behavior of poly(l-lactic acid) single crystals as revealed by in situ atomic force microscopy. Biomacromolecules 2003, 4, 1301–1307.

    CAS  PubMed  Google Scholar 

  28. Yang, Y.; Chen, M.; Li, H.; Li, H. The degree of crystallinity exhibiting a spatial distribution in polymer films. Eur. Polym. J. 2018, 107, 303–307.

    CAS  Google Scholar 

  29. He, P. The distribution of degree of crystallinity—new concept in polymer science. Chin. Chem. Lett. 2018, 29, 1711–1712.

    CAS  Google Scholar 

  30. Cam, D.; Hyon, S. H.; Ikada, Y. Degradation of high molecular weight poly(L-lactide) in alkaline medium. Biomaterials 1995, 16, 833–843.

    CAS  PubMed  Google Scholar 

  31. Harris, A. M.; Lee, E. C. Heat and humidity performance of injection molded PLA for durable applications. J. Appl. Polym. Sci. 2010, 115, 1380–1389.

    CAS  Google Scholar 

  32. Hobbs, J. K. In situ atomic force microscopy of the melting of melt-crystallized polyethylene. Polymer 2006, 47, 5566–5573.

    CAS  Google Scholar 

  33. Zhou, Z. Z.; Ma, L.; Zhen, W. W.; Sun, X. L.; Ren, Z. J.; Li, H. H.; Yan, S. K. An abnormal melting behavior of isotactic polypropylene spherulites grown at low temperatures. Polymer 2017, 111, 183–191.

    CAS  Google Scholar 

  34. Tabaksblat, R.; Meier, R. J.; Kip, B. J. Confocal raman microspectroscopy: theory and application to thin polymer samples. Appl. Spectrosc. 1992, 46, 60–68.

    CAS  Google Scholar 

  35. Baia, L.; Gigant, K.; Posset, U.; Petry, R.; Schottner, G.; Kiefer, W.; Popp, J. Confocal Raman investigations on hybrid polymer coatings. Vib. Spectrosc. 2002, 29, 245–249.

    CAS  Google Scholar 

  36. Kister, G.; Cassanas, G.; Vert, M.; Pauvert, B.; Térol, A. Vibrational analysis of poly(L-lactic acid). J. Raman Spectrosc. 1995, 26, 307–311.

    CAS  Google Scholar 

  37. Kister, G.; Cassanas, G.; Vert, M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 1998, 39, 267–273.

    CAS  Google Scholar 

  38. Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Infrared Spectroscopic Study of CH3⋯O=C Interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 2005, 38, 1822–1828.

    CAS  Google Scholar 

  39. Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B. The frustrated structure of poly(L-lactide). Polymer 2000, 41, 8921–8930.

    CAS  Google Scholar 

  40. Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): molecular weight dependence. Macromolecules 2007, 40, 6898–6905.

    CAS  Google Scholar 

  41. De Santis, P.; Kovacs, A. J. Molecular conformation of poly(S-lactic acid). Biopolymers 1968, 6, 299–306.

    CAS  PubMed  Google Scholar 

  42. Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; Tenbrinke, G.; Zugenmaier, P. Crystal-structure, conformation, and morphology of solution-spun poly(L-lactide) fibers. Macromolecules 1990, 23, 634–642.

    CAS  Google Scholar 

  43. Kalish, J. P.; Aou, K.; Yang, X.; Hsu, S. L. Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(L-lactic acid). Polymer 2011, 52, 814–821.

    CAS  Google Scholar 

  44. Di Lorenzo, M. L.; Cocca, M.; Malinconico, M. Crystal polymorphism of poly(L-lactic acid) and its influence on thermal properties. Thermochim. Acta 2011, 522, 110–117.

    CAS  Google Scholar 

  45. Androsch, R.; Di Lorenzo, M. L. Effect of molar mass on the α′/α-transition in poly (L-lactic acid). Polymer 2017, 114, 144–148.

    CAS  Google Scholar 

  46. Takahashi, K.; Sawai, D.; Yokoyama, T.; Kanamoto, T.; Hyon, S. H. Crystal transformation from the α- to the β-form upon tensile drawing of poly(L-lactic acid). Polymer 2004, 45, 4969–4976.

    CAS  Google Scholar 

  47. Ru, J. F.; Yang, S. G.; Zhou, D.; Yin, H. M.; Lei, J.; Li, Z. M. Dominant β-form of poly(L-lactic acid) obtained directly from melt under shear and pressure fields. Macromolecules 2016, 49, 3826–3837.

    CAS  Google Scholar 

  48. Bao, J.; Chang, X.; Xie, Q.; Yu, C.; Shan, G.; Bao, Y.; Pan, P. Preferential formation of β-form crystals and temperature-dependent polymorphic structure in supramolecular poly(L-lactic acid) bonded by multiple hydrogen bonds. Macromolecules 2010, 50, 8619–8630.

    Google Scholar 

  49. Lin, T.; Liu, X. Y.; He, C. Calculation of infrared/Raman spectra and dielectric properties of various crystalline poly(lactic acid)s by density functional perturbation theory (DFPT) method. J. Phys. Chem. B 2012, 116, 1524–1535.

    CAS  PubMed  Google Scholar 

  50. Righetti, M. C.; Gazzano, M.; Di Lorenzo, M. L.; Androsch, R. Enthalpy of melting of α′- and α-crystals of poly(L-lactic acid). Eur. Polym. J. 2015, 70, 215–220.

    CAS  Google Scholar 

  51. Parrish, W.; Langford, J. I. Powder and related techniques: X-ray techniques. In Springer Netherlands, Parrish, W.; Langford, J. I., Eds. Springer: Dordrecht, 2004, pp. 42–79.

    Google Scholar 

  52. Lopez-Rubio, A.; Flanagan, B. M.; Gilbert, E. P.; Gidley, M. J. A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 2008, 89, 761–768.

    CAS  PubMed  Google Scholar 

  53. Cocca, M.; Lorenzo, M. L. D.; Malinconico, M.; Frezza, V. Influence of crystal polymorphism on mechanical and barrier properties of poly(L-lactic acid). Eur. Polym. J. 2011, 47, 1073–1080.

    CAS  Google Scholar 

  54. Wasanasuk, K.; Tashiro, K. Crystal structure and disorder in poly(L-lactic acid) δ form (α′ form) and the phase transition mechanism to the ordered a form. Polymer 2011, 52, 6097–6109.

    CAS  Google Scholar 

  55. Hu, J.; Han, L. L.; Zhang, T. P.; Duan, Y. X.; Zhang, J. M. Study on phase transformation behavior of strain-induced PLLA mesophase by polarized infrared spectroscopy. Chinese J. Polym. Sci. 2018, 37, 253–257.

    Google Scholar 

  56. Li, H.; Sun, X.; Wang, J.; Yan, S.; Schultz, J. M. On the development of special positive isotactic polypropylene spherulites. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1114–1121.

    CAS  Google Scholar 

  57. Chen, Y. F.; Woo, E. M.; Wu, P. L. Alternating-layered spherulites in thin-film poly(trimethylene terephthalate) by stepwise crystallization schemes. Mater. Lett. 2007, 61, 4911–4915.

    CAS  Google Scholar 

  58. Woo, E. M.; Yen, K. C.; Wu, M. C. Analysis of multiple melting behavior of spherulites comprising ring-band shell/ringless core in polymorphic poly(butylene adipate). J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 892–899.

    CAS  Google Scholar 

  59. Liu, J.; Ye, H. M.; Xu, J.; Guo, B. H. Formation of ring-banded spherulites of α and β modifications in poly(butylene adipate). Polymer 2011, 52, 4619–4630.

    CAS  Google Scholar 

  60. Müller, A. J.; Hernández, Z. H.; Arnal, M. L.; Sánchez, J. J. Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym. Bull. 1990, 39, 465–472.

    Google Scholar 

  61. Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Insight into lamellar crystals of monodisperse polyfluorenes—fractionated crystallization and the crystal’s stability. polymer 2013, 54, 1251–1258.

    CAS  Google Scholar 

  62. Liu, C.; Sui, A.; Wang, Q.; Tian, H.; Geng, Y.; Yan, D. Fractionated crystallization of polydisperse polyfluorenes. Polymer 2011, 54, 3150–3155.

    Google Scholar 

  63. Hu, W. Molecular segregation in polymer melt crystallization: simulation evidence and unified-scheme interpretation. Macromolecules 2005, 38, 8712–8718.

    CAS  Google Scholar 

  64. Xiang, S.; Jun, S.; Li, G.; Bian, X. C.; Feng, L. D.; Chen, X. S.; Liu, F. Q.; Huang, S. Y. Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chinese J. Polym. Sci. 2015, 34, 69–76.

    Google Scholar 

  65. Androsch, R.; Zhuravlev, E.; Schick, C. Solid-state reorganization, melting and melt-recrystallization of conformationally disordered crystals (α′-phase) of poly(L-lactic acid). Polymer 2014, 55, 4932–4941.

    CAS  Google Scholar 

  66. Yu, H.; Huang, N.; Wang, C.; Tang, Z. Modeling of poly(L-lactide) thermal degradation: theoretical prediction of molecular weight and polydispersity index. J. Appl. Polym. Sci. 2003, 88, 2557–2562.

    CAS  Google Scholar 

  67. Umemoto, S.; Hayashi, R.; Kawano, R.; Kikutani, T.; Okui, N. Molecular weight dependence of primary nucleation rate of poly(ethylene succinate). J. Macromol. Sci., Phys. 2003, 42 B, 421–430.

    Google Scholar 

  68. Hsu, C. C.; Geil, P. H. Structure and properties of polybutylene crystallized from the glassy state I. X-ray scattering, DSC, and torsion pendulum. J. Macromol. Sci., Phys. 1986, 25, 433–466.

    Google Scholar 

  69. Park, J.; Eom, K.; Kwon, O.; Woo, S. Chemical etching technique for the investigation of melt-crystallized isotactic polypropylene spherulite and lamellar morphology by scanning electron microscopy. Microsc. Microanal. 2001, 7, 276–286.

    CAS  PubMed  Google Scholar 

  70. Jiang, S.; Duan, Y.; Li, L.; Yan, D.; Chen, E.; Yan, S. An AFM study on the structure and melting behavior of melt-crystallized isotactic poly(1-butene). Polymer 2004, 45, 6365–6374.

    CAS  Google Scholar 

  71. Tsuji, H.; Ikada, Y. Properties and morphology of poly(L-lactide) II. Hydrolysis in alkaline solution. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 59–66.

    CAS  Google Scholar 

  72. Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere 1973, 251, 980–990.

    CAS  Google Scholar 

  73. Weir, N.; Buchanan, F.; Orr, J.; Dickson, G. Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc. Inst. Mech. Eng. H 2004, 218, 307–319.

    CAS  PubMed  Google Scholar 

  74. Tsuji, H.; Saeki, T.; Tsukegi, T.; Daimon, H.; Fujie, K. Comparative study on hydrolytic degradation and monomer recovery of poly(L-lactic acid) in the solid and in the melt. Polym. Degrad. Stab. 2008, 93, 1956–1963.

    CAS  Google Scholar 

  75. Wang, Y. P.; Wei, X.; Duan, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese J. Polym. Sci. 2010, 35, 386–399.

    Google Scholar 

  76. Vert, M.; Schwarch, G.; Coudane, J. Present and future of PLA polymers. J. Macromol. Sci., Pure Appl. Chem. 1995, 32, 787–796.

    Google Scholar 

  77. Karlsson, S.; Albertsson, A. C. Biodegradable polymers and environmental interaction. Polym. Eng. Sci. 1998, 38, 1251–1253.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51625304 and 51873182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ying Li.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, DP., Chen, M., Yang, YH. et al. Texture Induced by Molecular Weight Dispersity: Polymorphism within Poly(L-lactic acid) Spherulites. Chin J Polym Sci 38, 1365–1373 (2020). https://doi.org/10.1007/s10118-020-2464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2464-0

Keywords

Navigation