Skip to main content

Advertisement

Log in

Scaffold Architecture and Matrix Strain Modulate Mesenchymal Cell and Microvascular Growth and Development in a Time Dependent Manner

  • 2020 CMBE Young Innovators issue
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Background

Volumetric tissue-engineered constructs are limited in development due to the dependence on well-formed vascular networks. Scaffold pore size and the mechanical properties of the matrix dictates cell attachment, proliferation and successive tissue morphogenesis. We hypothesize scaffold pore architecture also controls stromal-vessel interactions during morphogenesis.

Methods

The interaction between mesenchymal stem cells (MSCs) seeded on hydroxyapatite scaffolds of 450, 340, and 250 μm pores and microvascular fragments (MVFs) seeded within 20 mg/mL fibrin hydrogels that were cast into the cell-seeded scaffolds, was assessed in vitro over 21 days and compared to the fibrin hydrogels without scaffold but containing both MSCs and MVFs. mRNA sequencing was performed across all groups and a computational mechanics model was developed to validate architecture effects on predicting vascularization driven by stiffer matrix behavior at scaffold surfaces compared to the pore interior.

Results

Lectin staining of decalcified scaffolds showed continued vessel growth, branching and network formation at 14 days. The fibrin gel provides no resistance to spread-out capillary networks formation, with greater vessel loops within the 450 μm pores and vessels bridging across 250 μm pores. Vessel growth in the scaffolds was observed to be stimulated by hypoxia and successive angiogenic signaling. Fibrin gels showed linear fold increase in VEGF expression and no change in BMP2. Within scaffolds, there was multiple fold increase in VEGF between days 7 and 14 and early multiple fold increases in BMP2 between days 3 and 7, relative to fibrin. There was evidence of yap/taz based hippo signaling and mechanotransduction in the scaffold groups. The vessel growth models determined by computational modeling matched the trends observed experimentally.

Conclusion

The differing nature of hypoxia signaling between scaffold systems and mechano-transduction sensing matrix mechanics were primarily responsible for differences in osteogenic cell and microvessel growth. The computational model implicated scaffold architecture in dictating branching morphology and strain in the hydrogel within pores in dictating vessel lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Anders, S., P. T. Pyl, and W. Huber. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169, 2015.

    Google Scholar 

  2. Appleford, M. R., S. Oh, N. Oh, and J. L. Ong. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. J. Biomed. Mater. Res. A 89(4):1019–1027, 2009.

    Google Scholar 

  3. Bai, F., J. Zhang, Z. Wang, J. Lu, J. Chang, J. Liu, G. Meng, and X. Dong. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed. Mater. 6(1):015007, 2011.

    Google Scholar 

  4. Baksh, D., R. Yao, and R. S. Tuan. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392, 2007.

    Google Scholar 

  5. Barreto, S., A. Gonzalez-Vazquez, A. R. Cameron, B. Cavanagh, D. J. Murray, and F. J. O’Brien. Identification of the mechanisms by which age alters the mechanosensitivity of mesenchymal stromal cells on substrates of differing stiffness: implications for osteogenesis and angiogenesis. Acta Biomater. 53:59–69, 2017.

    Google Scholar 

  6. Boopathy, G. T., and W. Hong. Role of hippo pathway-Yap/Taz signaling in angiogenesis. Front. Cell Dev. Biol. 7:49, 2019.

    Google Scholar 

  7. Campana, V., G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, and G. Logroscino. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. 25(10):2445–2461, 2014.

    Google Scholar 

  8. Chang, C. C., and J. B. Hoying. Directed three-dimensional growth of microvascular cells and isolated microvessel fragments. Cell Transplant. 15(6):533–540, 2006.

    Google Scholar 

  9. Chang, C. C., S. S. Nunes, S. C. Sibole, L. Krishnan, S. K. Williams, J. A. Weiss, and J. B. Hoying. Angiogenesis in a microvascular construct for transplantation depends on the method of chamber circulation. Tissue Eng. Part A 16(3):795–805, 2010.

    Google Scholar 

  10. Cowin, S. C. Bone Poroelasticity. In: Bone Mechanics Handbook, edited by S. C. Cowin. Boca Raton: CRC Press, 2001, pp. 231–251.

    Google Scholar 

  11. Dadsetan, M., T. Guda, M. B. Runge, D. Mijares, R. Z. LeGeros, J. P. LeGeros, D. T. Silliman, L. Lu, J. C. Wenke, and P. R. B. Baer. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly (propylene fumarate) scaffolds. Acta Biomater. 18:9–20, 2015.

    Google Scholar 

  12. Dale, J., L. Krishnan, K. Aliaj, J. Beare, J. Weiss, and J. Hoying. Stromal cells promote neovascular invasion across tissue interfaces. The FASEB Journal 31(1 Supplement):682.1, 2017.

    Google Scholar 

  13. Deel, M. D., J. J. Li, L. E. Crose, and C. M. Linardic. A review: molecular aberrations within hippo signaling in bone and soft-tissue sarcomas. Front. Oncol. 5:190, 2015.

    Google Scholar 

  14. Dulgar-Tulloch, A., R. Bizios, and R. Siegel. Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J. Biomed. Mater. Res. A 90(2):586–594, 2009.

    Google Scholar 

  15. Dumas, J. E., E. M. Prieto, K. J. Zienkiewicz, T. Guda, J. C. Wenke, J. Bible, G. E. Holt, and S. A. Guelcher. Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects. Tissue Eng. A 20(1–2):115–129, 2014.

    Google Scholar 

  16. Edgar, L. T., J. B. Hoying, U. Utzinger, C. J. Underwood, L. Krishnan, B. K. Baggett, S. A. Maas, J. E. Guilkey, and J. A. Weiss. Mechanical interaction of angiogenic microvessels with the extracellular matrix. J. Biomech. Eng. 136(2):021001-021001-15, 2014.

    Google Scholar 

  17. Edgar, L. T., S. A. Maas, J. E. Guilkey, and J. A. Weiss. A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro. Biomech. Model. Mechanobiol. 14(4):767–782, 2015.

    Google Scholar 

  18. Edgar, L. T., S. C. Sibole, C. J. Underwood, J. E. Guilkey, and J. A. Weiss. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput. Methods Biomech. Biomed. Eng. 16(7):790–801, 2013.

    Google Scholar 

  19. Edgar, L. T., C. J. Underwood, J. E. Guilkey, J. B. Hoying, and J. A. Weiss. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS ONE 9(1):e85178, 2014.

    Google Scholar 

  20. Germain, S., C. Monnot, L. Muller, and A. Eichmann. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr. Opin. Hematol. 17(3), 2010

  21. Ghajar, C. M., X. Chen, J. W. Harris, V. Suresh, C. C. Hughes, N. L. Jeon, A. J. Putnam, and S. C. George. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J . 94(5):1930–1941, 2008.

    Google Scholar 

  22. Guda, T., M. Appleford, S. Oh, and J. L. Ong. A cellular perspective to bioceramic scaffolds for bone tissue engineering: the state of the art. Curr. Top. Med. Chem. 8(4):290–299, 2008.

    Google Scholar 

  23. Guda, T., J. Walker, B. Pollot, M. Appleford, S. Oh, J. Ong, and J. Wenke. In vivo performance of bilayer hydroxyapatite scaffolds for bone tissue regeneration in the rabbit radius. J. Mater. Sci. 22(3):647–656, 2011.

    Google Scholar 

  24. Guda, T., J. A. Walker, B. Singleton, J. Hernandez, D. S. Oh, M. R. Appleford, J. L. Ong, and J. C. Wenke. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J. Biomater. Appl. 28(7):1016–1027, 2014.

    Google Scholar 

  25. Guda, T., J. A. Walker, B. M. Singleton, J. W. Hernandez, J. S. Son, S. G. Kim, D. S. Oh, M. R. Appleford, J. L. Ong, and J. C. Wenke. Guided bone regeneration in long-bone defects with a structural hydroxyapatite graft and collagen membrane. Tissue Eng. A 19(17–18):1879–1888, 2013.

    Google Scholar 

  26. Hirche, C., L. Xiong, C. Heffinger, M. Munzberg, S. Fischer, U. Kneser, and T. Kremer. Vascularized versus non-vascularized bone grafts in the treatment of scaphoid non-union. J Orthop Surg (Hong Kong) 25(1):2309499016684291, 2017.

    Google Scholar 

  27. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4(7):518–524, 2005.

    Google Scholar 

  28. Hui, P. W., P. C. Leung, and A. Sher. Fluid conductance of cancellous bone graft as a predictor for graft-host interface healing. J. Biomech. 29(1):123–132, 1996.

    Google Scholar 

  29. Kang, S.-W., J.-S. Kim, K.-S. Park, B.-H. Cha, J.-H. Shim, J. Y. Kim, D.-W. Cho, J.-W. Rhie, and S.-H. Lee. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48(2):298–306, 2011.

    Google Scholar 

  30. Kim, D., G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4):R36, 2013.

    Google Scholar 

  31. Knothe Tate, M. L. Interstitial fluid flow. In: Bone Mechanics Handbook, edited by S. C. Cowin. Boca Raton: CRC Press, 2001, pp. 221–229.

    Google Scholar 

  32. Kolar, P., K. Schmidt-Bleek, H. Schell, T. Gaber, D. Toben, G. Schmidmaier, C. Perka, F. Buttgereit, and G. N. Duda. The early fracture hematoma and its potential role in fracture healing. Tissue Eng. B 16(4):427–434, 2010.

    Google Scholar 

  33. Krishnan, L., C. J. Underwood, S. Maas, B. J. Ellis, T. C. Kode, J. B. Hoying, and J. A. Weiss. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc. Res. 78(2):324–332, 2008.

    Google Scholar 

  34. Krishnan, L., N. J. Willett, and R. E. Guldberg. Vascularization strategies for bone regeneration. Ann. Biomed. Eng. 42(2):432–444, 2014.

    Google Scholar 

  35. Laschke, M. W., Y. Harder, M. Amon, I. Martin, J. Farhadi, A. Ring, N. Torio-Padron, R. Schramm, M. Rücker, and D. Junker. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 12(8):2093–2104, 2006.

    Google Scholar 

  36. Laschke, M. W., S. Kleer, C. Scheuer, S. Schuler, P. Garcia, D. Eglin, M. Alini, and M. D. Menger. Vascularisation of porous scaffolds is improved by incorporation of adipose tissue-derived microvascular fragments. Eur. Cell Mater. 24:266–277, 2012.

    Google Scholar 

  37. Laschke, M. W., and M. D. Menger. Vascularization in tissue engineering: angiogenesis versus inosculation. Eur. Surg. Res. 48(2):85–92, 2012.

    Google Scholar 

  38. Laschke, M. W., and M. D. Menger. Adipose tissue-derived microvascular fragments: natural vascularization units for regenerative medicine. Trends Biotechnol. 33(8):442–448, 2015.

    Google Scholar 

  39. Lee, E., J.-Y. Ko, J. Kim, J.-W. Park, S. Lee, and G.-I. Im. Osteogenesis and angiogenesis are simultaneously enhanced in BMP2-/VEGF-transfected adipose stem cells through activation of the YAP/TAZ signaling pathway. Biomater. Sci. 7(11):4588–4602, 2019.

    Google Scholar 

  40. Lennon, D. P., and A. I. Caplan. Isolation of rat marrow-derived mesenchymal stem cells. Exp. Hematol. 34(11):1606–1607, 2006.

    Google Scholar 

  41. Liao, Y., J. Wang, E. J. Jaehnig, Z. Shi, and B. Zhang. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucl. Acids Res. 47(W1):W199–w205, 2019.

    Google Scholar 

  42. Liberzon, A., A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo, and J. P. Mesirov. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740, 2011.

    Google Scholar 

  43. Love, M. I., W. Huber, and S. Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12):550, 2014.

    Google Scholar 

  44. Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 2012.

  45. Maas, S. A., S. A. LaBelle, G. A. Ateshian, and J. A. Weiss. A plugin framework for extending the simulation capabilities of FEBio. Biophys. J . 115(9):1630–1637, 2018.

    Google Scholar 

  46. Malda, J., T. J. Klein, and Z. Upton. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 13(9):2153–2162, 2007.

    Google Scholar 

  47. Matsubara, H., D. E. Hogan, E. F. Morgan, D. P. Mortlock, T. A. Einhorn, and L. C. Gerstenfeld. Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone 51(1):168–180, 2012.

    Google Scholar 

  48. McDaniel, J. S., M. Pilia, C. L. Ward, B. E. Pollot, and C. R. Rathbone. Characterization and multilineage potential of cells derived from isolated microvascular fragments. J. Surg. Res. 192(1):214–222, 2014.

    Google Scholar 

  49. Müller, P., U. Bulnheim, A. Diener, F. Lüthen, M. Teller, E. D. Klinkenberg, H. G. Neumann, B. Nebe, A. Liebold, and G. Steinhoff. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells. J. Cell Mol. Med. 12(1):281–291, 2008.

    Google Scholar 

  50. Nagel, T., and D. J. Kelly. Apparent behaviour of charged and neutral materials with ellipsoidal fibre distributions and cross-validation of finite element implementations. J. Mech. Behav. Biomed. Mater. 9:122–129, 2012.

    Google Scholar 

  51. Nauman, E. A., K. Fong, and T. Keaveny. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27(4):517–524, 1999.

    Google Scholar 

  52. Nunes, S. S., L. Krishnan, C. S. Gerard, J. R. Dale, M. A. Maddie, R. L. Benton, and J. B. Hoying. Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 17(7):557–567, 2010.

    Google Scholar 

  53. Park, K.-H., H. Kim, S. Moon, and K. Na. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J. Biosci. Bioeng. 108(6):530–537, 2009.

    Google Scholar 

  54. Pilia, M., J. S. McDaniel, T. Guda, X. K. Chen, R. P. Rhoads, R. E. Allen, B. T. Corona, and C. R. Rathbone. Transplantation and perfusion of microvascular fragments in a rodent model of volumetric muscle loss injury. Eur. Cell Mater. 28:11–23, 2014; (discussion 23-4).

    Google Scholar 

  55. Pilia, M., J. McDaniel, T. Guda, X. Chen, R. Rhoads, R. E. Allen, B. Corona, and C. Rathbone. Transplantation and perfusion of microvascular fragments in a rodent model of volumetric muscle loss injury. Eur. Cells Mater. 28:11–24, 2014.

    Google Scholar 

  56. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143, 1999.

    Google Scholar 

  57. Pollot, B. E., C. R. Rathbone, J. C. Wenke, and T. Guda. Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering. J. Biomed. Mater. Res. B 2017.

  58. Rathbone, C., T. Guda, B. Singleton, D. Oh, M. Appleford, J. Ong, and J. Wenke. Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration. J. Biomed. Mater. Res. A 102(5):1458–1466, 2014.

    Google Scholar 

  59. Ruehle, M. A., E. A. Eastburn, S. A. LaBelle, L. Krishnan, J. A. Weiss, J. D. Boerckel, L. B. Wood, R. E. Guldberg, and N. J. Willett. Mechanical regulation of microvascular angiogenesis. bioRxiv 2020

  60. Sander, E. A., and E. A. Nauman. Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit. Rev. Biomed. Eng. 31(1–2):1–26, 2003.

    Google Scholar 

  61. Santos, M. I., and R. L. Reis. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol. Biosci. 10(1):12–27, 2010.

    Google Scholar 

  62. Santos, M. I., K. Tuzlakoglu, S. Fuchs, M. E. Gomes, K. Peters, R. E. Unger, E. Piskin, R. L. Reis, and C. J. Kirkpatrick. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29(32):4306–4313, 2008.

    Google Scholar 

  63. Sato, N., Y. Sawasaki, A. Senoo, Y. Fuse, Y. Hirano, and T. Goto. Development of capillary networks from rat microvascular fragments in vitro: the role of myofibroblastic cells. Microvasc. Res. 33(2):194–210, 1987.

    Google Scholar 

  64. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7):671, 2012.

    Google Scholar 

  65. Schumann, P., C. Von See, A. Kampmann, D. Lindhorst, F. Tavassol, H. Kokemüller, K. H. Bormann, N. C. Gellrich, and M. Rücker. Comparably accelerated vascularization by preincorporation of aortic fragments and mesenchymal stem cells in implanted tissue engineering constructs. J. Biomed. Mater. Res. A 97(4):383–394, 2011.

    Google Scholar 

  66. Später, T., F. Frueh, M. Menger, and M. Laschke. Potentials and limitations of Integra® flowable wound matrix seeded with adipose tissue-derived microvascular fragments. Eur. Cells Mater. (ECM) 33:268–278, 2017.

    Google Scholar 

  67. Stegen, S., S. Deprez, G. Eelen, S. Torrekens, R. Van Looveren, J. Goveia, B. Ghesquière, P. Carmeliet, and G. Carmeliet. Adequate hypoxia inducible factor 1α signaling is indispensable for bone regeneration. Bone 87:176–186, 2016.

    Google Scholar 

  68. Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 11(5):18–25, 2008.

    Google Scholar 

  69. Stiers, P.-J., N. van Gastel, and G. Carmeliet. Targeting the hypoxic response in bone tissue engineering: a balance between supply and consumption to improve bone regeneration. Mol. Cell. Endocrinol. 432:96–105, 2016.

    Google Scholar 

  70. Stone, I. R., and C. R. Rathbone. Microvascular fragment transplantation improves rat dorsal skin flap survival. Plast. Reconstruct. Surg. Global Open 4(12), 2016

  71. Suva, L. J., G. J. Seedor, N. Endo, H. A. Quartuccio, D. D. Thompson, I. Bab, and G. A. Rodan. Pattern of gene expression following rat tibial marrow ablation. J. Bone Miner. Res. 8(3):379–388, 1993.

    Google Scholar 

  72. Tang, Y., and S. J. Weiss. Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation. Cell Cycle 16(5):399–405, 2017.

    Google Scholar 

  73. Team, R. C. R: a language and environment for statistical computing. New York: RC Team, 2013.

    Google Scholar 

  74. Tsigkou, O., I. Pomerantseva, J. A. Spencer, P. A. Redondo, A. R. Hart, E. O’Doherty, Y. Lin, C. C. Friedrich, L. Daheron, and C. P. Lin. Engineered vascularized bone grafts. Proc. Natl. Acad. Sci. 107(8):3311–3316, 2010.

    Google Scholar 

  75. Wang, X., A. F. Valls, G. Schermann, Y. Shen, I. M. Moya, L. Castro, S. Urban, G. M. Solecki, F. Winkler, L. Riedemann, R. K. Jain, M. Mazzone, T. Schmidt, T. Fischer, G. Halder, and C. R. de Almodovar. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42(5):462–478.e7, 2017.

    Google Scholar 

  76. Weinreb, M., D. Shinar, and G. A. Rodan. Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. J. Bone Miner. Res. 5(8):831–842, 1990.

    Google Scholar 

  77. Yang, W., D. Guo, M. A. Harris, Y. Cui, J. Gluhak-Heinrich, J. Wu, X.-D. Chen, C. Skinner, J. S. Nyman, and J. R. Edwards. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells. J. Cell Sci. 126(18):4085–4098, 2013.

    Google Scholar 

  78. Yu, H., P. J. VandeVord, L. Mao, H. W. Matthew, P. H. Wooley, and S.-Y. Yang. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30(4):508–517, 2009.

    Google Scholar 

  79. Yu, G., L. G. Wang, Y. Han, and Q. Y. He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287, 2012.

    Google Scholar 

  80. Zhu, A., J. G. Ibrahim, and M. I. Love. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35(12):2084–2092, 2019.

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Foundation CAREER Award (CBET#1847103), an Image Based Biomedical Modeling Fellowship and UTSA Research Funds (GREAT) to TG, funds from the Lutcher Brown Endowment to RB, the USAA Foundation to JLO, NIH SC1DK122578 support to CR NIH GM060655 and 1S10OD021805-01 (RISE training program) support to FMA and CP, UTSA College of Engineering support to EJ, UTSA Graduate School support to GC and SM, CPRIT Award RP160732 and NIH NCATS UL1TR002645 support to YC, and AACR AstraZeneca START grant (18-40-12-GORT) support to AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teja Guda.

Additional information

Associate Editor Shelly Peyton oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiou, G., Jui, E., Rhea, A.C. et al. Scaffold Architecture and Matrix Strain Modulate Mesenchymal Cell and Microvascular Growth and Development in a Time Dependent Manner. Cel. Mol. Bioeng. 13, 507–526 (2020). https://doi.org/10.1007/s12195-020-00648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00648-7

Keywords

Navigation