Skip to main content
Log in

Some results on higher eigenvalue optimization

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we obtain several results concerning the optimization of higher Steklov eigenvalues both in two and higher dimensional cases. We first show that the normalized (by boundary length) k-th Steklov eigenvalue on the disk is not maximized for a smooth metric on the disk for \(k\ge 3\). For \(k=1\) the classical result of Weinstock (J Ration Mech Anal 3:745–753, 1954) shows that \(\sigma _1\) is maximized by the standard metric on the round disk. For \(k=2\) it was shown by Girouard and Polterovich (Funct Anal Appl 44(2):106–117, 2010) that \(\sigma _2\) is not maximized for a smooth metric. We also prove a local rigidity result for the critical catenoid and the critical Möbius band as free boundary minimal surfaces in a ball under \(C^2\) deformations. We next show that the first k Steklov eigenvalues are continuous under certain degenerations of Riemannian manifolds in any dimension. Finally we show that for \(k\ge 2\) the supremum of the k-th Steklov eigenvalue on the annulus over all metrics is strictly larger that that over \(S^1\)-invariant metrics. We prove this same result for metrics on the Möbius band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam) 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Anné, C.: Spectre du laplacien et écrasement d’anses. Ann. Sci. École Norm. Sup. (4) 20(2), 271–280 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colbois, B., El Soufi, A.: Extremal eigenvalues of the Laplacian on Euclidean domains and closed surfaces. Math. Z. 278(1–2), 529–546 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colbois, B., Girouard, A., Hassannezhad, A.: The Steklov and Laplacian spectra of Riemannian manifolds with boundary. J. Funct. Anal. 278(6), 108409 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eichhorn, J.: The boundedness of connection coefficients and their derivatives. Math. Nachr. 152, 145–158 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan, X.-Q., Tam, L.F., Yu, C.: Extremal problems for Steklov eigenvalues on annuli. Calc. Var. Partial Differ. Equ. 54(1), 1043–1059 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fraser, A., Sargent, P.: Existence and classification of \({\mathbb{S}}^1\)-invariant free boundary minimal annuli and Möbius bands in \({\mathbb{B}}^n\) to appear in J. Geom. Anal.

  8. Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fraser, A., Schoen, R.: Minimal surfaces and eigenvalue problems. Geom. Anal. Math. Relativ. Nonlinear Partial Differ. Equ. 599, 105–121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraser, A., Schoen, R.: Uniqueness theorems for free boundary minimal disks in space forms. Int. Math. Res. Not. IMRN 17, 8268–8274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fraser, A., Schoen, R.: Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math. 203(3), 823–890 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fraser, A., Schoen, R.: Shape optimization for the Steklov problem in higher dimensions. Adv. Math. 348, 146–162 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    MATH  Google Scholar 

  14. Girouard, A., Polterovich, I.: On the Hersch–Payne–Schiffer estimates for the eigenvalues of the Steklov problem. Funct. Anal. Appl. 44(2), 106–117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Girouard, A., Polterovich, I.: Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announc. Math. Sci. 19, 77–85 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Hersch, J., Payne, L.E., Schiffer, M.M.: Some inequalities for Stekloff eigenvalues. Arch. Ration. Mech. Anal. 57, 99–114 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karpukhin, M.: Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds. Electron. Res. Announc. Math. Sci. 24, 100–109 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Karpukhin, M.: Maximal metrics for the first Steklov eigenvalue on surfaces. arXiv:1801.06914

  19. Karpukhin, M.: Index of minimal spheres and isoperimetric eigenvalue inequalities. arXiv:1905.03174

  20. Karpukhin, M., Nadirashvili, N., Penskoi, A., Polterovich, I.: An isoperimetric inequality for Laplace eigenvalues on the sphere, to appear in J. Differ. Geom.

  21. Nadirashvili, N.: Isoperimetric inequality for the second eigenvalue of a sphere. J. Differ. Geom. 61(2), 335–340 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nadirashvili, N., Penskoi, A.: An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane. Geom. Funct. Anal. 28(5), 1368–1393 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nadirashvili, N., Sire, Y.: Isoperimetric inequality for the third eigenvalue of the Laplace–Beltrami operator on \(\mathbb{S}^2\). J. Differ. Geom. 107(3), 561–571 (2017)

    MATH  Google Scholar 

  24. Petrides, R.: Maximization of the second conformal eigenvalue of spheres. Proc. Am. Math. Soc. 142(7), 2385–2394 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petrides, R.: Maximizing Steklov eigenvalues on surfaces. J. Differ. Geom. 113(1), 95–188 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schoen, R.: Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ. Geom. 18(4), 791–809 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schoen, R., Tran, H.: Complete manifolds with bounded curvature and spectral gaps. J. Differ. Equ. 261(4), 2584–2606 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. International Press, Cambridge (1994)

    MATH  Google Scholar 

  29. Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Ration. Mech. Anal. 3, 745–753 (1954)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailana Fraser.

Additional information

Communicated by P. Topping.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Fraser was partially supported by the Natural Sciences and Engineering Research Council of Canada and R. Schoen was partially supported by NSF Grant DMS-1710565. Part of this work was done while the authors were visiting the Institute for Advanced Study, with funding from NSF Grant DMS-1638352 and the James D. Wolfensohn Fund, and the authors gratefully acknowledge the support of the IAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, A., Schoen, R. Some results on higher eigenvalue optimization. Calc. Var. 59, 151 (2020). https://doi.org/10.1007/s00526-020-01802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01802-9

Mathematics Subject Classification

Navigation