Skip to main content
Log in

Conformal Contact Terms and Semi-local Terms

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study conformal properties of local terms such as contact terms and semi-local terms in correlation functions of a conformal field theory. Not all of them are universal observables, but they do appear in physically important correlation functions such as (anomalous) Ward–Takahashi identities or Schwinger–Dyson equations. We develop some tools such as embedding space delta functions and effective action to examine conformal invariance of these local terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Conformal invariant integration in the embedding space formalism was studied in [14].

  2. The introduction of s integration to represent the delta functions on the projective space can be found in the twistor literature (e.g. [20]). We need an extra integration over \(R^2\) to restrict the delta functions on the light-cone.

  3. As a distribution, \(\delta ^{(d)}_{k}(X,Y)\) can be integrated against the weight \(-k\) function \(f^{(-k)}(X)\) with the measure \(D^dX\) introduced [14] over the projective light-cone, which gives \(\int D^d X \delta _{k}^{(d)}(X,Y)f^{(-k)}(X) = f^{(-k)}(Y)\). Note that the freedom to choose different k is essential here.

  4. More precisely, with more careful distributional analysis, it is not impossible to make sense of such singular terms as \( \delta (x) \mathrm {P}\frac{1}{x} = -\frac{1}{2}\delta '(x) \), where \(\mathrm {P}\) represents the principal value, a la Sato [21], but they typically fail to be associative. In this case, the products of x, \(\delta (x)\) and \(\mathrm {P}\frac{1}{x}\) can be 0, \(\frac{1}{2}\delta (x)\), \(\delta (x)\) depending on the order. We will not study such terms in this paper.

  5. The transverse condition demands \(X^M \partial _M\) must annihilate the delta functions automatically, but \(X^M\partial _M\) precisely counts the projective weight and vanishes (only) if it acts on functions (or distributions) with zero projective weight.

  6. An interesting question arises if these conformal invariant contact terms can be compatible with the Weyl invariance. [24, 25] showed that it is not necessarily possible with higher orders of derivatives as one can see that the higher powers of Laplacians are not always Weyl invariant (in even dimensions).

  7. In the Hamiltonian picture, this delta function originates from the T-product and the canonical commutation relation.

  8. It is curious to observe that only when \(\Delta _1 = \frac{d}{2}+1\) (or \(\Delta _2 = \frac{d}{2}+1\)) one can construct the simple effective action \(\int d^dx \left( \Phi _3 J^2 \partial _\mu \partial ^\mu J^1 + J^3 \Phi _3 \right) \).

  9. For example, \(x\partial _x \delta (x-y)\) is different from \(y\partial _x \delta (x-y)\) as a distribution, which we can easily see by multiplying f(x) and integrating it over x.

References

  1. Poland, D., Rychkov, S., Vichi, A.: The conformal bootstrap: theory, numericaltechniques, and applications. Rev. Mod. Phys. 91(1), 15002 (2019). https://doi.org/10.1103/RevModPhys.91.015002

    Article  ADS  Google Scholar 

  2. Komargodski, Z., Schwimmer, A.: On Renormalization groupflows in four dimensions. JHEP 1112, 099 (2011). https://doi.org/10.1007/JHEP12(2011)099

    Article  ADS  MATH  Google Scholar 

  3. Bzowski, A., Skenderis, K.: Comments on scale and conformal invariance. JHEP 1408, 027 (2014). https://doi.org/10.1007/JHEP08(2014)027

    Article  ADS  Google Scholar 

  4. Dymarsky, A., Farnsworth, K., Komargodski, Z., Luty, M.A., Prilepina, V.: Scale invariance, conformality, and generalized free fields. JHEP 1602, 099 (2016). https://doi.org/10.1007/JHEP02(2016)099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bzowski, A., McFadden, P., Skenderis, K.: Renormalised 3-point functionsof stress tensors and conserved currents in CFT. JHEP 1811, 153 (2018). https://doi.org/10.1007/JHEP11(2018)153

    Article  ADS  MATH  Google Scholar 

  6. Gomis, J., Hsin, P.S., Komargodski, Z., Schwimmer, A., Seiberg, N., Theisen, S.: Anomalies, conformal manifolds, and spheres. JHEP 1603, 022 (2016). https://doi.org/10.1007/JHEP03(2016)022

    Article  ADS  MATH  Google Scholar 

  7. Gomis, J., Komargodski, Z., Ooguri, H., Seiberg, N., Wang, Y.: ShorteningAnomalies in supersymmetric theories. JHEP 1701, 067 (2017). https://doi.org/10.1007/JHEP01(2017)067

    Article  ADS  MATH  Google Scholar 

  8. Schwimmer, A., Theisen, S.: Moduli Anomalies and local terms in the operator product expansion. JHEP 1807, 110 (2018). https://doi.org/10.1007/JHEP07(2018)110

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cordova, C., Freed, D.S., Lam, H.T., Seiberg, N.: Anomalies in the Space of Coupling Constants and Their Dynamical Applications I. arXiv:1905.09315 [hep-th]

  10. Maldacena, J.M., Pimentel, G.L.: On graviton non-gaussianities during ination. JHEP 1109, 045 (2011). https://doi.org/10.1007/JHEP09(2011)045

    Article  ADS  MATH  Google Scholar 

  11. Closset, C., Dumitrescu, T.T., Festuccia, G., Komargodski, Z., Seiberg, N.: Contact terms, unitarity, and F-maximization in three-dimensional superconformal theories. JHEP 1210, 053 (2012). https://doi.org/10.1007/JHEP10(2012)053

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Closset, C., Dumitrescu, T.T., Festuccia, G., Komargodski, Z., Seiberg, N.: Comments on Chern-Simons contact terms in three dimensions. JHEP 1209, 091 (2012). https://doi.org/10.1007/JHEP09(2012)091

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Costa, M.S., Penedones, J., Poland, D., Rychkov, S.: Spinning conformal correlators. JHEP 1111, 071 (2011). https://doi.org/10.1007/JHEP11(2011)071

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Simmons-Duffin, D.: Projectors, shadows, and conformal blocks. JHEP 1404, 146 (2014). https://doi.org/10.1007/JHEP04(2014)146

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kravchuk, P., Simmons-Duffin, D.: Counting conformal correlators. JHEP 1802, 096 (2018). https://doi.org/10.1007/JHEP02(2018)096

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cuomo, G.F., Karateev, D., Kravchuk, P.: General bootstrap equations in 4DCFTs. JHEP 1801, 130 (2018). https://doi.org/10.1007/JHEP01(2018)130

    Article  ADS  MATH  Google Scholar 

  17. Isono, H.: On conformal correlators and blocks with spinors in general dimensions. Phys. Rev. D 96(6), 065011 (2017). https://doi.org/10.1103/PhysRevD.96.065011

    Article  ADS  MathSciNet  Google Scholar 

  18. Karateev, D., Kravchuk, P., Serone, M., Vichi, A.: Fermion conformal bootstrap in 4d. JHEP 2019(6), 88 (2019)

    Article  MathSciNet  Google Scholar 

  19. Fortin, J.F., Skiba, W.: New methods for conformal correlation functions. JHEP 2020, 1–87 (2020)

    MATH  Google Scholar 

  20. Mason, L.J., Reid-Edwards, R.A., Taghavi-Chabert, A.: Conformal field theories in six-dimensional twistor space. J. Geom. Phys. 62, 2353 (2012). https://doi.org/10.1016/j.geomphys.2012.08.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Sato, M.: Theory of hyperfunctions I, II. J. Fac. Sci. Univ. Tokyo Sect. 1 , 8 pp. 139-193; 387-437(1959-1960)

  22. Penedones, J., Trevisani, E., Yamazaki, M.: Recursion relations for conformal blocks. JHEP 1609, 070 (2016). https://doi.org/10.1007/JHEP09(2016)070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Osborn, H., Petkou, A.C.: Implications of conformal invariance ineld theories for general dimensions. Annals Phys 231, 311–362 (1994). https://doi.org/10.1006/aphy.1994.1045

    Article  ADS  Google Scholar 

  24. Schwimmer, A., Theisen, S.: Osborn equation and irrelevant operators. J. Stat. Mech. Theory Exp. 2019(8), 084011 (2019)

    Article  MathSciNet  Google Scholar 

  25. Nakayama, Y.: Conformal equations that are not Virasoro or Weyl invariant. Lett. Math. Phys. https://doi.org/10.1007/s11005-019-01186-8

  26. Nakayama, Y.: Realization of impossible anomalies. Phys. Rev. D 98(8), 085002 (2018). https://doi.org/10.1103/PhysRevD.98.085002

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhiboedov, A.:A note on three-point functions of conserved currents . arXiv:1206.6370 [hep-th]

  28. Nakayama, Y.: CP-violating CFT and trace anomaly. Nucl. Phys. B 859, 288 (2012). https://doi.org/10.1016/j.nuclphysb.2012.02.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Bonora, L., Giaccari, S., Lima de Souza, B.: Trace anomalies in chiral theories revisited. JHEP 1407, 117 (2014). https://doi.org/10.1007/JHEP07(2014)117

  30. Bonora, L., Cvitan, M., Dominis Prester, P., Duarte Pereira, A., Giaccari, S., Stemberga, T.: Axial gravity, massless fermions and trace anomalies. Eur. Phys. J. C 77(8), 511 (2017). https://doi.org/10.1140/epjc/s10052-017-5071-7

    Article  ADS  Google Scholar 

  31. Bonora, L., Cvitan, M., Dominis Prester, P., Giaccari, S., Paulisic, M., Stemberga, T.: Axial gravity: a non-perturbative approach to split anomalies. Eur. Phys. J. C 78(8), 652 (2018). https://doi.org/10.1140/epjc/s10052-018-6141-1

    Article  ADS  Google Scholar 

  32. Bastianelli, F., Broccoli, M.: On the trace anomaly of a Weyl fermion in a gauge background. Eur. Phys. J. C 79(4), 292 (2019). https://doi.org/10.1140/epjc/s10052-019-6799-z

    Article  ADS  MATH  Google Scholar 

  33. Frob, M.B., Zahn, J.: Trace anomaly for chiral fermions via Hadamard subtraction. JHEP 10, 223 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. Nakagawa, K., Nakayama, Y.: CP-violating super Weyl anomaly. Phys. Rev. D 101(10), 105013 (2020). https://doi.org/10.1103/PhysRevD.101.105013

    Article  ADS  MathSciNet  Google Scholar 

  35. Papadimitriou, I.: Supercurrent anomalies in 4d SCFTs. JHEP 1707, 38 (2017). https://doi.org/10.1007/JHEP07(2017)038

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. An, O.S.: Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization. JHEP 1712, 107 (2017). https://doi.org/10.1007/JHEP12(2017)107

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. An, O.S., Kang, J.U., Kim, J.C., Ko, Y.H.: Quantum consistency in supersymmetric theories with R-symmetry in curved space. JHEP 1905, 146 (2019). https://doi.org/10.1007/JHEP05(2019)146

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Katsianis, G., Papadimitriou, I., Skenderis, K., Taylor, M.: Anomalous Supersymmetry. arXiv:1902.06715 [hep-th]

  39. Papadimitriou, I.: Supersymmetry anomalies in N = 1 conformal supergravity. JHEP 1904, 40 (2019). https://doi.org/10.1007/JHEP04(2019)040

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Papadimitriou, I.: Supersymmetry anomalies in new minimal supergravity. JHEP 2019(9), 39 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is in part supported by JSPS KAKENHI Grant Number 17K14301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Nakayama.

Additional information

Communicated by Katrin Wendland.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Check of Special Conformal Invariance in Coordinate Space

A Check of Special Conformal Invariance in Coordinate Space

In this appendix, we perform a check of the special conformal invariance of some two-point functions directly in the coordinate space for \(d=1\). The generalization to higher dimension should be straightforward.

Let us begin with the usual non-local two-point functions

$$\begin{aligned} \langle O_{\Delta _1}(x_1) O_{\Delta _2}(x_2) \rangle = \frac{1}{(x_1-x_2)^{\Delta _1 + \Delta _2}} \ . \end{aligned}$$
(44)

Assuming that \(O_{\Delta _1}\) and \(O_{\Delta _2}\) are primary operators, the left-hand side transforms under the special conformal transformation \(x \rightarrow x + \epsilon x^2\) as

$$\begin{aligned} (1+2\epsilon x_1)^{-\Delta _1} (1+2\epsilon x_2)^{-\Delta _2} \langle O_{\Delta _1}(x_1) O_{\Delta _2}(x_2) \rangle \ . \end{aligned}$$
(45)

On the other hand, the right-hand side transforms as

$$\begin{aligned} \frac{1}{(x_1 + \epsilon x_1^2 - x_2 - \epsilon x_2^2)^{\Delta _1 + \Delta _2}} = \frac{1-\epsilon (x_1 + x_2)(\Delta _1 + \Delta _2)}{(x_1 - x_2)^{\Delta _1 + \Delta _2}} \ . \end{aligned}$$
(46)

The equality holds only if \(\Delta _1 = \Delta _2\), which is the well-known constraint on the two-point functions.

The constraint is weaker in the contact term without derivatives on the delta function. Let us consider

$$\begin{aligned} \langle O_{\Delta _1}(x_1) O_{\Delta _2}(x_2) \rangle = \delta (x_1-x_2) \end{aligned}$$
(47)

with \(\Delta _1 + \Delta _2 = 1\) from the scale invariance. Assuming that \(O_{\Delta _1}\) and \(O_{\Delta _2}\) are primary operators, the left-hand side transforms under the special conformal transformation \(x \rightarrow x + \epsilon x^2\) as

$$\begin{aligned}&(1+2\epsilon x_1)^{-\Delta _1} (1+2\epsilon x_2)^{-\Delta _2} \langle O_{\Delta _1}(x_1) O_{\Delta _2}(x_2) \rangle \nonumber \\&\quad = ( 1-2\epsilon x_1 (\Delta _1 + \Delta _2)) \delta (x_1 - x_2) \ . \end{aligned}$$
(48)

On the other hand, the right-hand side transforms as

$$\begin{aligned}&\delta (x_1 + \epsilon x_1^2 - x_2 - \epsilon x_2^2) \nonumber \\&\quad = (1-2\epsilon x_1) \delta (x_1 -x_2) \ . \end{aligned}$$
(49)

The equality between (48) and (49) holds as long as \(\Delta _1 + \Delta _2 = 1\) and there is no further constraint such as \(\Delta _1 = \Delta _2\).

Let us finally consider the contact term with a derivative acting on the delta function.

$$\begin{aligned} \langle O_{\Delta _1}(x_1) O_{\Delta _2}(x_2) \rangle = \partial _{x_1} \delta (x_1-x_2) \end{aligned}$$
(50)

with \(\Delta _1 + \Delta _2 = 2\) from the scale invariance. Assuming that \(O_{\Delta _1}\) and \(O_{\Delta _2}\) are primary operators, the left-hand side transforms under the special conformal transformation \(x \rightarrow x + \epsilon x^2\) as

$$\begin{aligned} (1+2\epsilon x_1)^{-\Delta _1} (1+2\epsilon x_2)^{-\Delta _2} \langle O_{\Delta _1}(x_1) O_{\Delta _2}(x_2) \rangle \\= (1+2\epsilon x_1)^{-\Delta _1} (1+2\epsilon x_2)^{-\Delta _2} \partial _{x_1} \delta (x_1 - x_2) \ . \end{aligned}$$
(51)

Note that unlike the case above, we cannot set \(x_1=x_2\) in front of the derivative of the delta function.Footnote 9 On the other hand, the right-hand side transforms as

$$\begin{aligned}&(1-2\epsilon x_1) \partial _{x_1} \delta (x_1 + \epsilon x_1^2 - x_2 - \epsilon x_2^2)\nonumber \\&\quad = (1-2\epsilon x_1) \partial _{x_1}((1-2\epsilon x_1) \delta (x_1 -x_2)) \ . \end{aligned}$$
(52)

The equality between (51) and (52) holds only if \(\Delta _1 = 1\) and \(\Delta _2=1\). This is consistent with our embedding space formalism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, Y. Conformal Contact Terms and Semi-local Terms. Ann. Henri Poincaré 21, 3201–3216 (2020). https://doi.org/10.1007/s00023-020-00951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00951-z

Navigation