Skip to main content

Advertisement

Log in

Static Crack Resistance of Heat-Resistant KhN43MBTYu Nickel-Chromium Alloy in Gaseous Hydrogen

  • Published:
Strength of Materials Aims and scope

The effect of hydrogen at a pressure of up to 35 MPa and a content of up to 29 ppm on the strength, ductility, short-term and long-term static crack resistance of four KhN43MBTYu (EP-915VD) alloy modifications with different heat treatment modes and chemical composition has been studied. It has been found that the critical stress intensity factor KIc in the presence of hydrogen, just as the ductility characteristics of smooth specimens, depends on the deformation rate, reaching minimum values at rates of less than 0.1 mm/min. The fracture toughness decreases under the action of hydrogen by a factor of 2.5, and the plane strain state occurs at a much smaller specimen thickness. An optimal combination of high strength, ductility, short- and long-term static crack resistance in air and hydrogen has been achieved in a fine-grained alloy with low carbon and sulfur content. Based on the results of long-term static crack resistance tests at the predetermined maximum fatigue test duration of 300 h, the invariant characteristics of crack resistance, the threshold values of stress intensity factor in hydrogen, have been determined, which vary from 23 to 48 MPa ∙ m1 / 2 depending on the alloy heat treatment mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. J. A. Lee, “Hydrogen embrittlement of nickel, cobalt and iron-based superalloys,” in: R. P. Gangloff and B. P. Somerday (Eds.), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Vol. 1: The Problem, Its Characterization and Effects on Particular Alloy Classes, Woodhead Publishing (2012), pp. 624–667.

    Chapter  Google Scholar 

  2. M. Dadfarnia, A. Nagao, S. Wang, et. al., “Recent advances on hydrogen embrittlement of structural materials,” Int. J. Fracture, 196, 223–243 (2015).

    Article  CAS  Google Scholar 

  3. A. M. Syrotyuk and I. M. Dmytrakh, “Methods for the evaluation of fracture and strength of pipeline steels and structures under the action of working media. Part I. Influence of the corrosion factor,” Mater. Sci., 50, No. 3, 324–339 (2014).

    Article  CAS  Google Scholar 

  4. A. I. Balitskii and V. V. Panasyuk, “Workability assessment of structural steels of power plant units in hydrogen environments,” Strength Mater., 41, No. 1, 52–57 (2009).

    Article  CAS  Google Scholar 

  5. A. M. Syrotyuk and I. M. Dmytrakh, “Methods for the evaluation of fracture and strength of pipeline steels and structures under the action of working media. Part II. Influence of hydrogen-containing media,” Mater. Sci., 50, No. 4, 475–487 (2015).

    Article  CAS  Google Scholar 

  6. A. I. Balitskii, V. I. Vytvytskyi, and L. M. Ivaskevich, “The low-cycle fatigue of corrosion-resistant steels in high pressure hydrogen,” Procedia Engineer., 2, No. 1, 2367–2371 (2010).

    Article  Google Scholar 

  7. O. Barrera, D. Bombac, Y. Chen, et al., “Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum,” J. Mater. Sci., 53, 6251–6290 (2018).

    Article  CAS  Google Scholar 

  8. D. M. Symons, “A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750,” Eng. Fract. Mech., 68, 751–771 (2001).

    Article  Google Scholar 

  9. D. Delafosse, X. Feaugas, I. Aubert, et al., “Hydrogen effects on the plasticity of FCC nickel and austenitic alloys,” in: B. Somerday, P. Sofronis, and R. Jones (Eds.), Effects of Hydrogen on Materials (Proc. of the 2008 Int. Hydrogen Conf., Sept. 7–10, 2008, WY, USA), ASM International, Material Park, OH (2009), pp. 78–87.

  10. A. I. Balitskii and L. M. Ivaskevich, “Assessment of hydrogen embrittlement in high-alloy chromium-nickel steels and alloys in hydrogen at high pressures and temperatures,” Strength Mater., 50, No. 6, 880–887 (2018).

    Article  CAS  Google Scholar 

  11. A. Balitskii, L. Ivaskevich, V. Mochulskyi, et al., “Influence of high pressure and high temperature hydrogen on fracture toughness of Ni-containing steels and alloys,” Arch. Mech. Eng., 61, No. 1, 129–138 (2014).

    Article  Google Scholar 

  12. N. A. Sorokina, T. K. Sergeeva, Yu. I. Rusinovich et al., “Hydrogen embrittlement resistance of differently doped nickel alloys,” Fiz.-Khim. Mekh. Mater., 21, No. 1, 27–31 (1985).

    CAS  Google Scholar 

  13. C. T. Sims, N. S. Stoloff, and W. C. Hagel (Eds.), Superalloys II, Wiley, New York (1987).

    Google Scholar 

  14. O. I. Balyts’kyi, V. M. Mochyl’skyi, and L. M. Ivas’kevych, “Evaluation of the influence of hydrogen on mechanical characteristics of complexly alloyed nickel alloys,” Mater. Sci., 51, No. 4, 538–547 (2016).

    Article  Google Scholar 

  15. GOST 9651-84. Metals. Methods of Elevated-Temperature Tensile Testing [in Russian], Publishing House of Standards, Moscow (1984).

  16. GOST 25506-85. Methods for the Mechanical Testing of Metals. Determination of Crack Resistance (Fracture Toughness) Characteristics under Static Loading [in Russian], Publishing House of Standards, Moscow (1985).

  17. ASTM E1820-08. Standart Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA (2008).

    Google Scholar 

  18. M. O. Speidel and M. V. Hyatt, Stress-Corrosion Cracking of High-Strength Aluminum Alloys, in: M. G. Fontana and R. W. Staehle (Eds.), Advances in Corrosion Science and Technology, Vol. 2, Springer, Boston, MA (1972), pp. 115–335.

    Chapter  Google Scholar 

  19. O. Z. Student, A. D. Markov, and H. M. Nykyforchyn, “Specific features of the influence of hydrogen on the properties and mechanism of fracture of the metal of welded joints of steam pipelines at thermal power plants,” Mater. Sci., 42, No. 4, 451–460 (2006).

    Article  CAS  Google Scholar 

  20. A. Balitskii, V. Vytvytskyii, I. Ivaskevich, and J. Eliasz, “The high- and low-cycle fatigue behavior of Ni-contain steels and Ni-alloys in high pressure hydrogen,” Int. J. Fatigue, 39, 32–37 (2012).

    Article  CAS  Google Scholar 

  21. D. Holländer, D. Kulawinski, A. Weidner, et al., “Small-scale specimen testing for fatigue life assessment of service-exposed industrial gas turbine blades,” Int. J. Fatigue, 92, 262–271 (2016).

    Article  Google Scholar 

  22. B. A. Kolachev, Hydrogen Brittleness of Metals [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  23. O. N. Romaniv and G. N. Nikiforchin, Corrosion Fracture Mechanics of Structural Alloys [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  24. I. Dmytrakh, “Corrosion fracture of structural metallic materials: Effect of electrochemical conditions in crack,” Strain. Int. J. Exp. Mech., 47, 427–435 (2011).

    CAS  Google Scholar 

  25. W. F. Brown and J. E. Srawley, Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP 410, ASTM International, West Conshohocken, PA (1966).

    Google Scholar 

  26. M. H. Stashchuk, “Influence of hydrogen concentration on the stresses in a solid metallic cylinder,” Mater. Sci., 53, No. 6, 823–831 (2018).

    Article  CAS  Google Scholar 

  27. P. V. Yasniy, I. B. Okipnyi, P. O. Maruschak, et al., “Crack tip strain localization on mechanics of fracture of heat resistance steel after hydrogenation,” Theor. Appl. Fract. Mech., 63–64, 63–68 (2013).

  28. P. V. Yasniy, I. B. Okipnyi, P. O. Maruschak, et al., “Toughness and failure of heat resistance steel before and after hydrogenation,” Theor. Appl. Fract. Mech., 56, 63–67 (2011).

    Article  CAS  Google Scholar 

  29. V. I. Tkachov, L. M. Ivas’kevych, and V. M. Mochul’skyi, “Temperature dependences of the mechanical properties of austenitic and martensitic steels in hydrogen,” Mater. Sci., 43, No. 5, 654–666 (2007).

    Article  CAS  Google Scholar 

  30. O. I. Balyts’kyi, L. M. Ivas’kevych, and V. M. Mochul’s’kyi, “Mechanical properties of martensitic steels in gaseous hydrogen,” Strength Mater., 44, No. 1, 64–71 (2012).

    Article  Google Scholar 

  31. O. I. Balyts’kyi and O. O. Krokhmal’nyi, “Pitting corrosion of 12Kh18AG18Sh steel in chloride solutions,” Mater. Sci., 35, No. 3, 389–394 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. I. Balyts’kyi, L. M. Ivas’kevych or J. J. Eliasz.

Additional information

Translated from Problemy Prochnosti, No. 3, pp. 61 – 74, May – June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balyts’kyi, O.I., Ivas’kevych, L.M. & Eliasz, J.J. Static Crack Resistance of Heat-Resistant KhN43MBTYu Nickel-Chromium Alloy in Gaseous Hydrogen. Strength Mater 52, 386–397 (2020). https://doi.org/10.1007/s11223-020-00189-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-020-00189-4

Keywords

Navigation