Skip to main content

Advertisement

Log in

Glucose transporters in cardiovascular system in health and disease

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T, Minnemann T, Boers ME, Hadro E, Oberste-Berghaus C, Quist W, Lowell BB, Ingwall JS, Kahn BB (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104:1703–1714. https://doi.org/10.1172/JCI7605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aerni-Flessner L, Abi-Jaoude M, Koenig A, Payne M, Hruz PW (2012) GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc Diabetol 11:63. https://doi.org/10.1186/1475-2840-11-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alpert E, Gruzman A, Riahi Y, Blejter R, Aharoni P, Weisinger G, Eckel J, Kaiser N, Sasson S (2005) Delayed autoregulation of glucose transport in vascular endothelial cells. Diabetologia 48:752–755. https://doi.org/10.1007/s00125-005-1681-y

    Article  CAS  PubMed  Google Scholar 

  4. An D, Kewalramani G, Qi D, Pulinilkunnil T, Ghosh S, Abrahani A, Wambolt R, Allard M, Innis SM, Rodrigues B (2005) beta-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload. Am J Physiol 288:E1120–E1127. https://doi.org/10.1152/ajpendo.00588.2004

    Article  CAS  Google Scholar 

  5. Arias EB, Zheng X, Agrawal S, Cartee GD (2019) Whole body glucoregulation and tissue-specific glucose uptake in a novel Akt substrate of 160 kDa knockout rat model. PLoS One 14:e0216236. https://doi.org/10.1371/journal.pone.0216236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Armoni M, Harel C, Bar-Yoseph F, Milo S, Karnieli E (2005) Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements. J Biol Chem 280:34786–34795. https://doi.org/10.1074/jbc.M502740200

    Article  CAS  PubMed  Google Scholar 

  7. Aroor AR, Mandavia CH, Sowers JR (2012) Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin 8:609–617. https://doi.org/10.1016/j.hfc.2012.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel R, Zuurbier CJ (2017) Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia 60:568–573. https://doi.org/10.1007/s00125-016-4134-x

    Article  CAS  PubMed  Google Scholar 

  9. Bagul PK, Katare PB, Bugga P, Dinda AK, Banerjee SK (2018) SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM. Cells 7. doi:https://doi.org/10.3390/cells7120235

  10. Balteau M, Van Steenbergen A, Timmermans AD, Dessy C, Behets-Wydemans G, Tajeddine N, Castanares-Zapatero D, Gilon P, Vanoverschelde JL, Horman S, Hue L, Bertrand L, Beauloye C (2014) AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 307:H1120–H1133. https://doi.org/10.1152/ajpheart.00210.2014

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293:H1883–H1891. https://doi.org/10.1152/ajpheart.00514.2007

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee SK, McGaffin KR, Pastor-Soler NM, Ahmad F (2009) SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res 84:111–118. https://doi.org/10.1093/cvr/cvp190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barbeau PA, Houad JM, Huber JS, Paglialunga S, Snook LA, Herbst EAF, Dennis K, Simpson JA, Holloway GP (2020) Ablating the Rab-GTPase activating protein TBC1D1 predisposes rats to high-fat diet-induced cardiomyopathy. J Physiol 598:683–697. https://doi.org/10.1113/JP279042

    Article  CAS  PubMed  Google Scholar 

  14. Beauloye C, Bertrand L, Horman S, Hue L (2011) AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc Res 90:224–233. https://doi.org/10.1093/cvr/cvr034

    Article  CAS  PubMed  Google Scholar 

  15. Beauloye C, Marsin AS, Bertrand L, Vanoverschelde JL, Rider MH, Hue L (2002) The stimulation of heart glycolysis by increased workload does not require AMP-activated protein kinase but a wortmannin-sensitive mechanism. FEBS Lett 531:324–328. https://doi.org/10.1016/s0014-5793(02)03552-4

    Article  CAS  PubMed  Google Scholar 

  16. Bertrand L, Ginion A, Beauloye C, Hebert AD, Guigas B, Hue L, Vanoverschelde JL (2006) AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B. Am J Physiol Heart Circ Physiol 291:H239–H250. https://doi.org/10.1152/ajpheart.01269.2005

    Article  CAS  PubMed  Google Scholar 

  17. Bertrand L, Horman S, Beauloye C, Vanoverschelde JL (2008) Insulin signalling in the heart. Cardiovasc Res 79:238–248. https://doi.org/10.1093/cvr/cvn093

    Article  CAS  PubMed  Google Scholar 

  18. Bowman PRT, Smith GL, Gould GW (2019) GLUT4 expression and glucose transport in human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 14:e0217885. https://doi.org/10.1371/journal.pone.0217885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2:454–466. https://doi.org/10.1242/dmm.001941

    Article  CAS  PubMed  Google Scholar 

  20. Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671. https://doi.org/10.1007/s00125-014-3171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705. https://doi.org/10.2337/db07-1098

    Article  CAS  PubMed  Google Scholar 

  22. Carvajal K, Zarrinpashneh E, Szarszoi O, Joubert F, Athea Y, Mateo P, Gillet B, Vaulont S, Viollet B, Bigard X, Bertrand L, Ventura-Clapier R, Hoerter JA (2007) Dual cardiac contractile effects of the alpha2-AMPK deletion in low-flow ischemia and reperfusion. Am J Physiol Heart Circ Physiol 292:H3136–H3147. https://doi.org/10.1152/ajpheart.00683.2006

    Article  CAS  PubMed  Google Scholar 

  23. Chang W, Zhang M, Li J, Meng Z, Wei S, Du H, Chen L, Hatch GM (2013) Berberine improves insulin resistance in cardiomyocytes via activation of 5’-adenosine monophosphate-activated protein kinase. Metabolism 62:1159–1167. https://doi.org/10.1016/j.metabol.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  24. Chen S, Wasserman DH, MacKintosh C, Sakamoto K (2011) Mice with AS160/TBC1D4-Thr649Ala knockin mutation are glucose intolerant with reduced insulin sensitivity and altered GLUT4 trafficking. Cell Metab 13:68–79. https://doi.org/10.1016/j.cmet.2010.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A (2011) Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 23:1546–1554. https://doi.org/10.1016/j.cellsig.2011.05.022

    Article  CAS  PubMed  Google Scholar 

  26. Collins HE, Chatham JC (1866) Regulation of cardiac O-GlcNAcylation: more than just nutrient availability. Biochim Biophys Acta Mol basis Dis 2020:165712. https://doi.org/10.1016/j.bbadis.2020.165712

    Article  CAS  Google Scholar 

  27. Connelly KA, Zhang Y, Desjardins JF, Thai K, Gilbert RE (2018) Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction. Cardiovasc Diabetol 17:99. https://doi.org/10.1186/s12933-018-0741-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cook SA, Varela-Carver A, Mongillo M, Kleinert C, Khan MT, Leccisotti L, Strickland N, Matsui T, Das S, Rosenzweig A, Punjabi P, Camici PG (2010) Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J 31:100–111. https://doi.org/10.1093/eurheartj/ehp396

    Article  CAS  PubMed  Google Scholar 

  29. Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J, McLure SW, King MT, Dodd MS, Holloway C, Neubauer S, Drawer S, Veech RL, Griffin JL, Clarke K (2016) Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab 24:256–268. https://doi.org/10.1016/j.cmet.2016.07.010

    Article  CAS  Google Scholar 

  30. Crisafulli A, Pagliaro P, Roberto S, Cugusi L, Mercuro G, Lazou A, Beauloye C, Bertrand L, Hausenloy DJ, Aragno M, Penna C (2020) Diabetic cardiomyopathy and ischemic heart disease: prevention and therapy by exercise and conditioning. Int J Mol Sci 21. https://doi.org/10.3390/ijms21082896

  31. De Blasio MJ, Huynh K, Qin C, Rosli S, Kiriazis H, Ayer A, Cemerlang N, Stocker R, Du XJ, McMullen JR, Ritchie RH (2015) Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110alpha) signaling. Free Radic Biol Med 87:137–147. https://doi.org/10.1016/j.freeradbiomed.2015.04.028

    Article  CAS  PubMed  Google Scholar 

  32. DeBosch B, Sambandam N, Weinheimer C, Courtois M, Muslin AJ (2006) Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem 281:32841–32851. https://doi.org/10.1074/jbc.M513087200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dirkx E, Schwenk RW, Coumans WA, Hoebers N, Angin Y, Viollet B, Bonen A, van Eys GJ, Glatz JF, Luiken JJ (2012) Protein kinase D1 is essential for contraction-induced glucose uptake but is not involved in fatty acid uptake into cardiomyocytes. J Biol Chem 287:5871–5881. https://doi.org/10.1074/jbc.M111.281881

    Article  CAS  PubMed  Google Scholar 

  34. Doenst T, Taegtmeyer H (1999) Alpha-adrenergic stimulation mediates glucose uptake through phosphatidylinositol 3-kinase in rat heart. Circ Res 84:467–474. https://doi.org/10.1161/01.res.84.4.467

    Article  CAS  PubMed  Google Scholar 

  35. Ducheix S, Magre J, Cariou B, Prieur X (2018) Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. Front Endocrinol (Lausanne) 9:642. https://doi.org/10.3389/fendo.2018.00642

    Article  Google Scholar 

  36. Egert S, Nguyen N, Brosius FC 3rd, Schwaiger M (1997) Effects of wortmannin on insulin- and ischemia-induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovasc Res 35:283–293. https://doi.org/10.1016/s0008-6363(97)00133-8

    Article  CAS  PubMed  Google Scholar 

  37. Egert S, Nguyen N, Schwaiger M (1999) Contribution of alpha-adrenergic and beta-adrenergic stimulation to ischemia-induced glucose transporter (GLUT) 4 and GLUT1 translocation in the isolated perfused rat heart. Circ Res 84:1407–1415. https://doi.org/10.1161/01.res.84.12.1407

    Article  CAS  PubMed  Google Scholar 

  38. El-Daly M, Pulakazhi Venu VK, Saifeddine M, Mihara K, Kang S, Fedak PWM, Alston LA, Hirota SA, Ding H, Triggle CR, Hollenberg MD (2018) Hyperglycaemic impairment of PAR2-mediated vasodilation: prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vasc Pharmacol 109:56–71. https://doi.org/10.1016/j.vph.2018.06.006

    Article  CAS  Google Scholar 

  39. Facundo HT, Brainard RE, Watson LJ, Ngoh GA, Hamid T, Prabhu SD, Jones SP (2012) O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 302:H2122–H2130. https://doi.org/10.1152/ajpheart.00775.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferron M, Denis M, Persello A, Rathagirishnan R, Lauzier B (2018) Protein O-GlcNAcylation in cardiac pathologies: past, present, future. Front Endocrinol (Lausanne) 9:819. https://doi.org/10.3389/fendo.2018.00819

    Article  Google Scholar 

  41. Fiaschi T, Magherini F, Gamberi T, Lucchese G, Faggian G, Modesti A, Modesti PA (2014) Hyperglycemia and angiotensin II cooperate to enhance collagen I deposition by cardiac fibroblasts through a ROS-STAT3-dependent mechanism. Biochim Biophys Acta 1843:2603–2610. https://doi.org/10.1016/j.bbamcr.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  42. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20:953–966. https://doi.org/10.1016/j.cmet.2014.09.018

    Article  CAS  PubMed  Google Scholar 

  43. Frangogiannis NG (2019) Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Asp Med 65:70–99. https://doi.org/10.1016/j.mam.2018.07.001

    Article  CAS  Google Scholar 

  44. Fukushima A, Lopaschuk GD (2016) Acetylation control of cardiac fatty acid beta-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochim Biophys Acta 1862:2211–2220. https://doi.org/10.1016/j.bbadis.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  45. Gaudreault N, Scriven DR, Laher I, Moore ED (2008) Subcellular characterization of glucose uptake in coronary endothelial cells. Microvasc Res 75:73–82. https://doi.org/10.1016/j.mvr.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  46. Gaudreault N, Scriven DR, Moore ED (2004) Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 47:2081–2092. https://doi.org/10.1007/s00125-004-1583-4

    Article  CAS  PubMed  Google Scholar 

  47. Gelinas R, Dontaine J, Horman S, Beauloye C, Bultot L, Bertrand L (2018) AMP-activated protein kinase and O-GlcNAcylation, two partners tightly connected to regulate key cellular processes. Front Endocrinol (Lausanne) 9:519. https://doi.org/10.3389/fendo.2018.00519

    Article  Google Scholar 

  48. Gelinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A, Daskalopoulos EP, Esfahani H, Dubois-Deruy E, Lauzier B, Gauthier C, Olson AK, Bouchard B, Des Rosiers C, Viollet B, Sakamoto K, Balligand JL, Vanoverschelde JL, Beauloye C, Horman S, Bertrand L (2018) AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun 9:374. https://doi.org/10.1038/s41467-017-02795-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ginion A, Auquier J, Benton CR, Mouton C, Vanoverschelde JL, Hue L, Horman S, Beauloye C, Bertrand L (2011) Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 301:H469–H477. https://doi.org/10.1152/ajpheart.00986.2010

    Article  CAS  PubMed  Google Scholar 

  50. Gorski DJ, Petz A, Reichert C, Twarock S, Grandoch M, Fischer JW (2019) Cardiac fibroblast activation and hyaluronan synthesis in response to hyperglycemia and diet-induced insulin resistance. Sci Rep 9:1827. https://doi.org/10.1038/s41598-018-36140-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gray S, Kim JK (2011) New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab 22:394–403. https://doi.org/10.1016/j.tem.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han Y, Cho YE, Ayon R, Guo R, Youssef KD, Pan M, Dai A, Yuan JX, Makino A (2015) SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Phys Lung Cell Mol Phys 309:L1027–L1036. https://doi.org/10.1152/ajplung.00167.2015

    Article  CAS  Google Scholar 

  53. Hartmann T, Overhagen S, Ouwens DM, Raschke S, Wohlfart P, Tennagels N, Wronkowitz N, Eckel J (2016) Effect of the long-acting insulin analogues glargine and degludec on cardiomyocyte cell signalling and function. Cardiovasc Diabetol 15:96. https://doi.org/10.1186/s12933-016-0410-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heather LC, Pates KM, Atherton HJ, Cole MA, Ball DR, Evans RD, Glatz JF, Luiken JJ, Griffin JL, Clarke K (2013) Differential translocation of the fatty acid transporter, FAT/CD36, and the glucose transporter, GLUT4, coordinates changes in cardiac substrate metabolism during ischemia and reperfusion. Circ Heart Fail 6:1058–1066. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000342

    Article  CAS  PubMed  Google Scholar 

  55. Heilig CW, Saunders T, Brosius FC 3rd, Moley K, Heilig K, Baggs R, Guo L, Conner D (2003) Glucose transporter-1-deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy. Proc Natl Acad Sci U S A 100:15613–15618. https://doi.org/10.1073/pnas.2536196100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heitmeier MR, Payne MA, Weinheimer C, Kovacs A, Hresko RC, Jay PY, Hruz PW (2018) Metabolic and cardiac adaptation to chronic pharmacologic blockade of facilitative glucose transport in murine dilated cardiomyopathy and myocardial ischemia. Sci Rep 8:6475. https://doi.org/10.1038/s41598-018-24867-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hirsch E, Costa C, Ciraolo E (2007) Phosphoinositide 3-kinases as a common platform for multi-hormone signaling. J Endocrinol 194:243–256. https://doi.org/10.1677/JOE-07-0097

    Article  CAS  PubMed  Google Scholar 

  58. Horman S, Beauloye C, Vanoverschelde JL, Bertrand L (2012) AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep 9:164–173. https://doi.org/10.1007/s11897-012-0102-z

    Article  CAS  PubMed  Google Scholar 

  59. Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol 297:E578–E591. https://doi.org/10.1152/ajpendo.00093.2009

    Article  CAS  Google Scholar 

  60. Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD (2011) Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 1813:1333–1350. https://doi.org/10.1016/j.bbamcr.2011.01.015

    Article  CAS  PubMed  Google Scholar 

  61. JeBailey L, Rudich A, Huang X, Di Ciano-Oliveira C, Kapus A, Klip A (2004) Skeletal muscle cells and adipocytes differ in their reliance on TC10 and Rac for insulin-induced actin remodeling. Mol Endocrinol 18:359–372. https://doi.org/10.1210/me.2003-0294

    Article  CAS  PubMed  Google Scholar 

  62. Jimenez-Amilburu V, Jong-Raadsen S, Bakkers J, Spaink HP, Marin-Juez R (2015) GLUT12 deficiency during early development results in heart failure and a diabetic phenotype in zebrafish. J Endocrinol 224:1–15. https://doi.org/10.1530/JOE-14-0539

    Article  CAS  PubMed  Google Scholar 

  63. Jin X, Yi L, Chen ML, Chen CY, Chang H, Zhang T, Wang L, Zhu JD, Zhang QY, Mi MT (2013) Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1. PLoS One 8:e68617. https://doi.org/10.1371/journal.pone.0068617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Karlstaedt A, Khanna R, Thangam M, Taegtmeyer H (2020) Glucose 6-phosphate accumulates via phosphoglucose isomerase inhibition in heart muscle. Circ Res 126:60–74. https://doi.org/10.1161/CIRCRESAHA.119.315180

    Article  CAS  PubMed  Google Scholar 

  65. Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, Iwanaga Y, Narazaki M, Matsuda T, Soga T, Kita T, Kimura T, Shioi T (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 3:420–430. https://doi.org/10.1161/CIRCHEARTFAILURE.109.888479

    Article  PubMed  Google Scholar 

  66. Khemais-Benkhiat S, Belcastro E, Idris-Khodja N, Park SH, Amoura L, Abbas M, Auger C, Kessler L, Mayoux E, Toti F, Schini-Kerth VB (2020) Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence. J Cell Mol Med 24:2109–2122. https://doi.org/10.1111/jcmm.14233

    Article  CAS  PubMed  Google Scholar 

  67. Kim AS, Miller EJ, Wright TM, Li J, Qi D, Atsina K, Zaha V, Sakamoto K, Young LH (2011) A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J Mol Cell Cardiol 51:24–32. https://doi.org/10.1016/j.yjmcc.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kodde IF, van der Stok J, Smolenski RT, de Jong JW (2007) Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol 146:26–39. https://doi.org/10.1016/j.cbpa.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  69. Kolwicz SC Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R (2012) Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 111:728–738. https://doi.org/10.1161/CIRCRESAHA.112.268128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113:603–616. https://doi.org/10.1161/CIRCRESAHA.113.302095

    Article  CAS  PubMed  Google Scholar 

  71. Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71:549–574. https://doi.org/10.1007/s00018-013-1349-6

    Article  CAS  PubMed  Google Scholar 

  72. Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ (2006) Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55:2067–2076. https://doi.org/10.2337/db06-0150

    Article  CAS  PubMed  Google Scholar 

  73. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5’-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520. https://doi.org/10.1074/jbc.270.29.17513

    Article  CAS  PubMed  Google Scholar 

  74. Lee YM, Lee JO, Jung JH, Kim JH, Park SH, Park JM, Kim EK, Suh PG, Kim HS (2008) Retinoic acid leads to cytoskeletal rearrangement through AMPK-Rac1 and stimulates glucose uptake through AMPK-p38 MAPK in skeletal muscle cells. J Biol Chem 283:33969–33974. https://doi.org/10.1074/jbc.M804469200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li Z, Agrawal V, Ramratnam M, Sharma RK, D’Auria S, Sincoular A, Jakubiak M, Music ML, Kutschke WJ, Huang XN, Gifford L, Ahmad F (2019) Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury. Cardiovasc Res 115:1646–1658. https://doi.org/10.1093/cvr/cvz037

    Article  CAS  PubMed  Google Scholar 

  76. Liao R, Jain M, Cui L, D’Agostino J, Aiello F, Luptak I, Ngoy S, Mortensen RM, Tian R (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106:2125–2131. https://doi.org/10.1161/01.cir.0000034049.61181.f3

    Article  CAS  PubMed  Google Scholar 

  77. Lopaschuk GD, Ussher JR (2016) Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res 119:1173–1176. https://doi.org/10.1161/CIRCRESAHA.116.310078

    Article  CAS  PubMed  Google Scholar 

  78. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. https://doi.org/10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  79. Luiken JJ, Coort SL, Willems J, Coumans WA, Bonen A, van der Vusse GJ, Glatz JF (2003) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52:1627–1634. https://doi.org/10.2337/diabetes.52.7.1627

    Article  CAS  PubMed  Google Scholar 

  80. Lunde IG, Aronsen JM, Kvaloy H, Qvigstad E, Sjaastad I, Tonnessen T, Christensen G, Gronning-Wang LM, Carlson CR (2012) Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure. Physiol Genomics 44:162–172. https://doi.org/10.1152/physiolgenomics.00016.2011

    Article  CAS  PubMed  Google Scholar 

  81. Mailleux F, Gelinas R, Beauloye C, Horman S, Bertrand L (2016) O-GlcNAcylation, enemy or ally during cardiac hypertrophy development? Biochim Biophys Acta 1862:2232–2243. https://doi.org/10.1016/j.bbadis.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  82. Mangmool S, Denkaew T, Phosri S, Pinthong D, Parichatikanond W, Shimauchi T, Nishida M (2016) Sustained betaAR stimulation mediates cardiac insulin resistance in a PKA-dependent manner. Mol Endocrinol 30:118–132. https://doi.org/10.1210/me.2015-1201

    Article  CAS  PubMed  Google Scholar 

  83. Maria Z, Campolo AR, Lacombe VA (2015) Diabetes alters the expression and translocation of the insulin-sensitive glucose transporters 4 and 8 in the atria. PLoS One 10:e0146033. https://doi.org/10.1371/journal.pone.0146033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, Van den Berghe G, Carling D, Hue L (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10:1247–1255. https://doi.org/10.1016/s0960-9822(00)00742-9

    Article  CAS  PubMed  Google Scholar 

  85. Matsushita N, Ishida N, Ibi M, Saito M, Sanbe A, Shimojo H, Suzuki S, Koepsell H, Takeishi Y, Morino Y, Taira E, Sawa Y, Hirose M (2018) Chronic pressure overload induces cardiac hypertrophy and fibrosis via increases in SGLT1 and IL-18 gene expression in mice. Int Heart J 59:1123–1133. https://doi.org/10.1536/ihj.17-565

    Article  CAS  PubMed  Google Scholar 

  86. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjostrand M, Langkilde AM, Committees D-HT, Investigators (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303

    Article  CAS  PubMed  Google Scholar 

  87. McNulty PH, Sinusas AJ, Shi CQ, Dione D, Young LH, Cline GC, Shulman GI (1996) Glucose metabolism distal to a critical coronary stenosis in a canine model of low-flow myocardial ischemia. J Clin Invest 98:62–69. https://doi.org/10.1172/JCI118778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Montessuit C, Papageorgiou I, Lerch R (2008) Nuclear receptor agonists improve insulin responsiveness in cultured cardiomyocytes through enhanced signaling and preserved cytoskeletal architecture. Endocrinology 149:1064–1074. https://doi.org/10.1210/en.2007-0656

    Article  CAS  PubMed  Google Scholar 

  89. Montessuit C, Papageorgiou I, Remondino-Muller A, Tardy I, Lerch R (1998) Post-ischemic stimulation of 2-deoxyglucose uptake in rat myocardium: role of translocation of Glut-4. J Mol Cell Cardiol 30:393–403. https://doi.org/10.1006/jmcc.1997.0602

    Article  CAS  PubMed  Google Scholar 

  90. Montessuit C, Thorburn A (1999) Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. J Biol Chem 274:9006–9012. https://doi.org/10.1074/jbc.274.13.9006

    Article  CAS  PubMed  Google Scholar 

  91. Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanovic S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanovic A, Alessi DR (2003) Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J 22:4666–4676. https://doi.org/10.1093/emboj/cdg469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, Tian R (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44:662–667. https://doi.org/10.1161/01.HYP.0000144292.69599.0c

    Article  CAS  PubMed  Google Scholar 

  93. Nielsen R, Jorsal A, Iversen P, Tolbod L, Bouchelouche K, Sorensen J, Harms HJ, Flyvbjerg A, Botker HE, Wiggers H (2018) Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J Nucl Cardiol 25:169–176. https://doi.org/10.1007/s12350-016-0622-0

    Article  PubMed  Google Scholar 

  94. Noppe G, Dufeys C, Buchlin P, Marquet N, Castanares-Zapatero D, Balteau M, Hermida N, Bouzin C, Esfahani H, Viollet B, Bertrand L, Balligand JL, Vanoverschelde JL, Beauloye C, Horman S (2014) Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKalpha1. J Mol Cell Cardiol 74:32–43. https://doi.org/10.1016/j.yjmcc.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  95. Olson AK, Bouchard B, Zhu WZ, Chatham JC, Des Rosiers C (2020) First characterization of glucose flux through the hexosamine biosynthesis pathway (HBP) in ex vivo mouse heart. J Biol Chem 295:2018–2033. https://doi.org/10.1074/jbc.RA119.010565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Park SY, Cho YR, Kim HJ, Higashimori T, Danton C, Lee MK, Dey A, Rothermel B, Kim YB, Kalinowski A, Russell KS, Kim JK (2005) Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes 54:3530–3540. https://doi.org/10.2337/diabetes.54.12.3530

    Article  CAS  PubMed  Google Scholar 

  97. Paternostro G, Pagano D, Gnecchi-Ruscone T, Bonser RS, Camici PG (1999) Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 42:246–253. https://doi.org/10.1016/s0008-6363(98)00233-8

    Article  CAS  PubMed  Google Scholar 

  98. Pereira RO, Wende AR, Olsen C, Soto J, Rawlings T, Zhu Y, Anderson SM, Abel ED (2013) Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction. J Am Heart Assoc 2:e000301. https://doi.org/10.1161/JAHA.113.000301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98:2133–2223. https://doi.org/10.1152/physrev.00063.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peterzan MA, Lygate CA, Neubauer S, Rider OJ (2017) Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 313:H597–H616. https://doi.org/10.1152/ajpheart.00731.2016

    Article  PubMed  Google Scholar 

  101. Pi X, Xie L, Patterson C (2018) Emerging roles of vascular endothelium in metabolic homeostasis. Circ Res 123:477–494. https://doi.org/10.1161/CIRCRESAHA.118.313237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Prakoso D, De Blasio MJ, Tate M, Kiriazis H, Donner DG, Qian H, Nash D, Deo M, Weeks KL, Parry LJ, Gregorevic P, McMullen JR, Ritchie RH (2020) Gene therapy targeting cardiac phosphoinositide 3-kinase (p110alpha) attenuates cardiac remodeling in type 2 diabetes. Am J Physiol Heart Circ Physiol 318:H840–H852. https://doi.org/10.1152/ajpheart.00632.2019

    Article  CAS  PubMed  Google Scholar 

  103. Prata C, Zambonin L, Rizzo B, Maraldi T, Angeloni C, Vieceli Dalla Sega F, Fiorentini D, Hrelia S (2017) Glycosides from Stevia rebaudiana Bertoni possess insulin-mimetic and antioxidant activities in rat cardiac fibroblasts. Oxidative Med Cell Longev 2017:3724545. https://doi.org/10.1155/2017/3724545

    Article  CAS  Google Scholar 

  104. Puthanveetil P, Wang F, Kewalramani G, Kim MS, Hosseini-Beheshti E, Ng N, Lau W, Pulinilkunnil T, Allard M, Abrahani A, Rodrigues B (2008) Cardiac glycogen accumulation after dexamethasone is regulated by AMPK. Am J Physiol Heart Circ Physiol 295:H1753–H1762. https://doi.org/10.1152/ajpheart.518.2008

    Article  CAS  PubMed  Google Scholar 

  105. Ramratnam M, Sharma RK, D’Auria S, Lee SJ, Wang D, Huang XY, Ahmad F (2014) Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice. J Am Heart Assoc 3. doi:https://doi.org/10.1161/JAHA.114.000899

  106. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789. https://doi.org/10.1016/s0140-6736(63)91500-9

    Article  CAS  PubMed  Google Scholar 

  107. Rattigan S, Appleby GJ, Clark MG (1991) Insulin-like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta 1094:217–223. https://doi.org/10.1016/0167-4889(91)90012-m

    Article  CAS  PubMed  Google Scholar 

  108. Renguet E, Bultot L, Beauloye C, Horman S, Bertrand L (2018) The regulation of insulin-stimulated cardiac glucose transport via protein acetylation. Front Cardiovasc Med 5:70. https://doi.org/10.3389/fcvm.2018.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Renguet E, Ginion A, Gelinas R, Bultot L, Auquier J, Robillard Frayne I, Daneault C, Vanoverschelde JL, Des Rosiers C, Hue L, Horman S, Beauloye C, Bertrand L (2017) Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. Am J Physiol Heart Circ Physiol 313:H432–H445. https://doi.org/10.1152/ajpheart.00738.2016

    Article  PubMed  Google Scholar 

  110. Ritchie RH, Abel ED (2020) Basic mechanisms of diabetic heart disease. Circ Res 126:1501–1525. https://doi.org/10.1161/CIRCRESAHA.120.315913

    Article  CAS  PubMed  Google Scholar 

  111. Ritterhoff J, Tian R (2017) Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 113:411–421. https://doi.org/10.1093/cvr/cvx017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ritterhoff J, Young S, Villet O, Shao D, Neto FC, Bettcher LF, Hsu YA, Kolwicz SC Jr, Raftery D, Tian R (2020) Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ Res 126:182–196. https://doi.org/10.1161/CIRCRESAHA.119.315483

    Article  CAS  PubMed  Google Scholar 

  113. Roden M (2004) How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 19:92–96. https://doi.org/10.1152/nips.01459.2003

    Article  CAS  PubMed  Google Scholar 

  114. Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R (2001) Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 52:407–416. https://doi.org/10.1016/s0008-6363(01)00393-5

    Article  CAS  PubMed  Google Scholar 

  115. Russell RR 3rd, Bergeron R, Shulman GI, Young LH (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Phys 277:H643–H649. https://doi.org/10.1152/ajpheart.1999.277.2.H643

    Article  CAS  Google Scholar 

  116. Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, Giordano FJ, Mu J, Birnbaum MJ, Young LH (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503. https://doi.org/10.1172/JCI19297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Russo I, Frangogiannis NG (2016) Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 90:84–93. https://doi.org/10.1016/j.yjmcc.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  118. Salt IP, Hardie DG (2017) AMP-activated protein kinase: an ubiquitous signaling pathway with key roles in the cardiovascular system. Circ Res 120:1825–1841. https://doi.org/10.1161/CIRCRESAHA.117.309633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sawa Y, Saito M, Ishida N, Ibi M, Matsushita N, Morino Y, Taira E, Hirose M (2020) Pretreatment with KGA-2727, a selective SGLT1 inhibitor, is protective against myocardial infarction-induced ventricular remodeling and heart failure in mice. J Pharmacol Sci 142:16–25. https://doi.org/10.1016/j.jphs.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  120. Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JF, Luiken JJ (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53:2209–2219. https://doi.org/10.1007/s00125-010-1832-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Segalen C, Longnus SL, Baetz D, Counillon L, Van Obberghen E (2008) 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside reduces glucose uptake via the inhibition of Na+/H+ exchanger 1 in isolated rat ventricular cardiomyocytes. Endocrinology 149:1490–1498. https://doi.org/10.1210/en.2007-1326

    Article  CAS  PubMed  Google Scholar 

  122. Sen S, Kundu BK, Wu HC, Hashmi SS, Guthrie P, Locke LW, Roy RJ, Matherne GP, Berr SS, Terwelp M, Scott B, Carranza S, Frazier OH, Glover DK, Dillmann WH, Gambello MJ, Entman ML, Taegtmeyer H (2013) Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. J Am Heart Assoc 2:e004796. https://doi.org/10.1161/JAHA.113.004796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shao D, Tian R (2015) Glucose transporters in cardiac metabolism and hypertrophy. Compr Physiol 6:331–351. https://doi.org/10.1002/cphy.c150016

    Article  PubMed  PubMed Central  Google Scholar 

  124. Shuralyova I, Tajmir P, Bilan PJ, Sweeney G, Coe IR (2004) Inhibition of glucose uptake in murine cardiomyocyte cell line HL-1 by cardioprotective drugs dilazep and dipyridamole. Am J Physiol Heart Circ Physiol 286:H627–H632. https://doi.org/10.1152/ajpheart.00639.2003

    Article  CAS  PubMed  Google Scholar 

  125. Singh VP, Baker KM, Kumar R (2008) Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol 294:H1675–H1684. https://doi.org/10.1152/ajpheart.91493.2007

    Article  CAS  PubMed  Google Scholar 

  126. Steinberg GR, Carling D (2019) AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 18:527–551. https://doi.org/10.1038/s41573-019-0019-2

    Article  CAS  PubMed  Google Scholar 

  127. Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M (2010) Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 298:H833–H843. https://doi.org/10.1152/ajpheart.00418.2009

    Article  CAS  PubMed  Google Scholar 

  128. Sylow L, Jensen TE, Kleinert M, Hojlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA (2013) Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 62:1865–1875. https://doi.org/10.2337/db12-1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sylow L, Kleinert M, Pehmoller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE (2014) Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal 26:323–331. https://doi.org/10.1016/j.cellsig.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  130. Szablewski L (2017) Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 230:70–75. https://doi.org/10.1016/j.ijcard.2016.12.083

    Article  PubMed  Google Scholar 

  131. Taegtmeyer H, Beauloye C, Harmancey R, Hue L (2013) Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. Am J Physiol Heart Circ Physiol 305:H1693–H1697. https://doi.org/10.1152/ajpheart.00854.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Taegtmeyer H, Beauloye C, Harmancey R, Hue L (2015) Comment on Nolan et al. insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes 2015;64:673-686. Diabetes 64:e37. doi:https://doi.org/10.2337/db15-0655

  133. Tallquist MD, Molkentin JD (2017) Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol 14:484–491. https://doi.org/10.1038/nrcardio.2017.57

    Article  PubMed  PubMed Central  Google Scholar 

  134. Taubert D, Rosenkranz A, Berkels R, Roesen R, Schomig E (2004) Acute effects of glucose and insulin on vascular endothelium. Diabetologia 47:2059–2071. https://doi.org/10.1007/s00125-004-1586-1

    Article  CAS  PubMed  Google Scholar 

  135. Tian R, Abel ED (2001) Responses of GLUT4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation 103:2961–2966. https://doi.org/10.1161/01.cir.103.24.2961

    Article  CAS  PubMed  Google Scholar 

  136. Tian R, Musi N, D’Agostino J, Hirshman MF, Goodyear LJ (2001) Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104:1664–1669. https://doi.org/10.1161/hc4001.097183

    Article  CAS  PubMed  Google Scholar 

  137. Timmermans AD, Balteau M, Gelinas R, Renguet E, Ginion A, de Meester C, Sakamoto K, Balligand JL, Bontemps F, Vanoverschelde JL, Horman S, Beauloye C, Bertrand L (2014) A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. Am J Physiol Heart Circ Physiol 306:H1619–H1630. https://doi.org/10.1152/ajpheart.00965.2013

    Article  CAS  PubMed  Google Scholar 

  138. Totary-Jain H, Naveh-Many T, Riahi Y, Kaiser N, Eckel J, Sasson S (2005) Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circ Res 97:1001–1008. https://doi.org/10.1161/01.RES.0000189260.46084.e5

    Article  CAS  PubMed  Google Scholar 

  139. Tran DH, May HI, Li Q, Luo X, Huang J, Zhang G, Niewold E, Wang X, Gillette TG, Deng Y, Wang ZV (2020) Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. Nat Commun 11:1771. https://doi.org/10.1038/s41467-020-15640-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Treebak JT, Glund S, Deshmukh A, Klein DK, Long YC, Jensen TE, Jorgensen SB, Viollet B, Andersson L, Neumann D, Wallimann T, Richter EA, Chibalin AV, Zierath JR, Wojtaszewski JF (2006) AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 55:2051–2058. https://doi.org/10.2337/db06-0175

    Article  CAS  PubMed  Google Scholar 

  141. Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Aiba A, Kahn CR, Kataoka T, Satoh T (2010) Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 24:2254–2261. https://doi.org/10.1096/fj.09-137380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, Jancev M, Hollmann MW, Weber NC, Coronel R, Zuurbier CJ (2018) Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger, lowering of cytosolic Na(+) and vasodilation. Diabetologia 61:722–726. https://doi.org/10.1007/s00125-017-4509-7

    Article  CAS  PubMed  Google Scholar 

  143. Van Steenbergen A, Balteau M, Ginion A, Ferte L, Battault S, Ravenstein CM, Balligand JL, Daskalopoulos EP, Gilon P, Despa F, Despa S, Vanoverschelde JL, Horman S, Koepsell H, Berry G, Hue L, Bertrand L, Beauloye C (2017) Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Sci Rep 7:41166. https://doi.org/10.1038/srep41166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vichaiwong K, Purohit S, An D, Toyoda T, Jessen N, Hirshman MF, Goodyear LJ (2010) Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle. Biochem J 431:311–320. https://doi.org/10.1042/BJ20101100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O, Radovic N, Jadrijevic S, Aleksic I, Walles T, Sauvant C, Sabolic I, Koepsell H (2015) Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898. https://doi.org/10.1007/s00424-014-1619-7

    Article  CAS  PubMed  Google Scholar 

  146. Wang C, Hu SM (1991) Developmental regulation in the expression of rat heart glucose transporters. Biochem Biophys Res Commun 177:1095–1100. https://doi.org/10.1016/0006-291x(91)90651-m

    Article  CAS  PubMed  Google Scholar 

  147. Wang HY, Ducommun S, Quan C, Xie B, Li M, Wasserman DH, Sakamoto K, Mackintosh C, Chen S (2013) AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochem J 449:479–489. https://doi.org/10.1042/BJ20120702

    Article  CAS  PubMed  Google Scholar 

  148. Weeks KL, Gao X, Du XJ, Boey EJ, Matsumoto A, Bernardo BC, Kiriazis H, Cemerlang N, Tan JW, Tham YK, Franke TF, Qian H, Bogoyevitch MA, Woodcock EA, Febbraio MA, Gregorevic P, McMullen JR (2012) Phosphoinositide 3-kinase p110alpha is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail 5:523–534. https://doi.org/10.1161/CIRCHEARTFAILURE.112.966622

    Article  CAS  PubMed  Google Scholar 

  149. Wende AR, Schell JC, Ha CM, Pepin ME, Khalimonchuk O, Schwertz H, Pereira RO, Brahma MK, Tuinei J, Contreras-Ferrat A, Wang L, Andrizzi CA, Olsen CD, Bradley WE, Dell’Italia LJ, Dillmann WH, Litwin SE, Abel ED (2020) Maintaining myocardial glucose utilization in diabetic cardiomyopathy accelerates mitochondrial dysfunction. Diabetes. https://doi.org/10.2337/db19-1057

  150. Wheeler TJ, Fell RD, Hauck MA (1994) Translocation of two glucose transporters in heart: effects of rotenone, uncouplers, workload, palmitate, insulin and anoxia. Biochim Biophys Acta 1196:191–200. https://doi.org/10.1016/0005-2736(94)00211-8

    Article  PubMed  Google Scholar 

  151. Willaert A, Khatri S, Callewaert BL, Coucke PJ, Crosby SD, Lee JG, Davis EC, Shiva S, Tsang M, De Paepe A, Urban Z (2012) GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGFbeta signaling. Hum Mol Genet 21:1248–1259. https://doi.org/10.1093/hmg/ddr555

    Article  CAS  PubMed  Google Scholar 

  152. Wilson C, Contreras-Ferrat A, Venegas N, Osorio-Fuentealba C, Pavez M, Montoya K, Duran J, Maass R, Lavandero S, Estrada M (2013) Testosterone increases GLUT4-dependent glucose uptake in cardiomyocytes. J Cell Physiol 228:2399–2407. https://doi.org/10.1002/jcp.24413

    Article  CAS  PubMed  Google Scholar 

  153. Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794. https://doi.org/10.1152/physrev.00055.2009

    Article  CAS  PubMed  Google Scholar 

  154. Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60:1770–1778. https://doi.org/10.2337/db10-0351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, Goodyear LJ, Tian R (2003) Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative alpha2 subunit of AMP-activated protein kinase. J Biol Chem 278:28372–28377. https://doi.org/10.1074/jbc.M303521200

    Article  CAS  PubMed  Google Scholar 

  156. Yan J, Young ME, Cui L, Lopaschuk GD, Liao R, Tian R (2009) Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation 119:2818–2828. https://doi.org/10.1161/CIRCULATIONAHA.108.832915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang J, Holman GD (2005) Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem 280:4070–4078. https://doi.org/10.1074/jbc.M410213200

    Article  CAS  PubMed  Google Scholar 

  158. Yazdani S, Jaldin-Fincati JR, Pereira RVS, Klip A (2019) Endothelial cell barriers: transport of molecules between blood and tissues. Traffic 20:390–403. https://doi.org/10.1111/tra.12645

    Article  CAS  PubMed  Google Scholar 

  159. Young LH, Renfu Y, Russell R, Hu X, Caplan M, Ren J, Shulman GI, Sinusas AJ (1997) Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 95:415–422. https://doi.org/10.1161/01.cir.95.2.415

    Article  CAS  PubMed  Google Scholar 

  160. Yu W, Gao B, Li N, Wang J, Qiu C, Zhang G, Liu M, Zhang R, Li C, Ji G, Zhang Y (2017) Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta Mol basis Dis 1863:1973–1983. https://doi.org/10.1016/j.bbadis.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  161. Zaha V, Nitschke R, Gobel H, Fischer-Rasokat U, Zechner C, Doenst T (2005) Discrepancy between GLUT4 translocation and glucose uptake after ischemia. Mol Cell Biochem 278:129–137. https://doi.org/10.1007/s11010-005-7154-2

    Article  CAS  PubMed  Google Scholar 

  162. Zarrinpashneh E, Carjaval K, Beauloye C, Ginion A, Mateo P, Pouleur AC, Horman S, Vaulont S, Hoerter J, Viollet B, Hue L, Vanoverschelde JL, Bertrand L (2006) Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am J Physiol Heart Circ Physiol 291:H2875–H2883. https://doi.org/10.1152/ajpheart.01032.2005

    Article  CAS  PubMed  Google Scholar 

  163. Zelniker TA, Braunwald E (2020) Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC State-of-the-Art Review. J Am Coll Cardiol 75:422–434. https://doi.org/10.1016/j.jacc.2019.11.031

    Article  CAS  PubMed  Google Scholar 

  164. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31–39. https://doi.org/10.1016/S0140-6736(18)32590-X

    Article  CAS  PubMed  Google Scholar 

  165. Zhabyeyev P, Gandhi M, Mori J, Basu R, Kassiri Z, Clanachan A, Lopaschuk GD, Oudit GY (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res 97:676–685. https://doi.org/10.1093/cvr/cvs424

    Article  CAS  PubMed  Google Scholar 

  166. Zhang L, Jaswal JS, Ussher JR, Sankaralingam S, Wagg C, Zaugg M, Lopaschuk GD (2013) Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy. Circ Heart Fail 6:1039–1048. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000228

    Article  CAS  PubMed  Google Scholar 

  167. Zhang Y, Wang JH, Zhang YY, Wang YZ, Wang J, Zhao Y, Jin XX, Xue GL, Li PH, Sun YL, Huang QH, Song XT, Zhang ZR, Gao X, Yang BF, Du ZM, Pan ZW (2016) Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFbeta1 and miR-29 pathways. Sci Rep 6:23010. https://doi.org/10.1038/srep23010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhou L, Huang H, Yuan CL, Keung W, Lopaschuk GD, Stanley WC (2008) Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. Am J Physiol Heart Circ Physiol 294:H954–H960. https://doi.org/10.1152/ajpheart.00557.2007

    Article  CAS  PubMed  Google Scholar 

  169. Ziegler GC, Almos P, McNeill RV, Jansch C, Lesch KP (2020) Cellular effects and clinical implications of SLC2A3 copy number variation. J Cell Physiol. https://doi.org/10.1002/jcp.29753

  170. Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz-Meana M, Jespersen NR, Kula-Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T (2020) Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 24:5937–5954. https://doi.org/10.1111/jcmm.15180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors are supported by grants from the Fonds National de la Recherche Scientifique et Médicale (FNRS), Belgium, and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles (ARC 16/21-074), Belgium, and by unrestricted grants from Astra Zeneca. J.A. was and M.A. is supported by the Fund for Scientific Research in Industry and Agriculture, Belgium. S.H. is Senior Research Associate, whereas L.B. is Research Director of FNRS, Belgium.

Author information

Authors and Affiliations

Authors

Contributions

J.A. and E.R. performed the RAC experiments. M.A. and J.C. collaborated in writing the chapter dedicated to non-myocyte cells. L.B., S.H. and C.B. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Luc Bertrand.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Glucose Transporters in Health and Disease in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertrand, L., Auquier, J., Renguet, E. et al. Glucose transporters in cardiovascular system in health and disease. Pflugers Arch - Eur J Physiol 472, 1385–1399 (2020). https://doi.org/10.1007/s00424-020-02444-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02444-8

Keywords

Navigation