Skip to main content
Log in

Deletion correcting codes meet the Littlewood–Offord problem

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we make a novel connection between information theory and additive combinatorics; more specifically, between deletion/insertion correcting codes and the celebrated Littlewood–Offord problem. We see how results from one area can have an impact on the other area and vice versa. In particular, a result on the Littlewood–Offord problem gives a nice upper bound for the size of the Levenshtein code and the Helberg code (and possibly other variants of these codes). Also, a recent result on the deletion correcting codes gives a modular analogue of the Littlewood–Offord problem which generalizes the results of Vaughan and Wooley (Q J Math Oxf Ser (2) 42(2):379–386, 1991) (obtained using tools from analytic number theory and properties of exponential sums) and of Griggs (Bull Am Math Soc (N.S.) 28:329–333, 1993) (obtained using a combinatorial argument). This novel connection might opens up new doors to research in these or other related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balister P., Bollobás B.: Projections, entropy and sumsets. Combinatorica 32, 125–141 (2012).

    Article  MathSciNet  Google Scholar 

  2. Bibak, K.: Additive combinatorics with a view towards computer science and cryptography, Number Theory and Related Fields: In Memory of Alf van der Poorten (Borwein, J.M., Shparlinski, I.E., Zudilin, W. eds.), Springer Proceedings in Mathematics & Statistics, Vol. 43, Springer, New York, p. 99–128 (2013).

  3. Bibak K., Kapron B.M., Srinivasan V.: Unweighted linear congruences with distinct coordinates and the Varshamov-Tenengolts codes. Des. Codes Cryptogr. 86, 1893–1904 (2018).

    Article  MathSciNet  Google Scholar 

  4. Bibak K., Kapron B.M., Srinivasan V., Tauraso R., Tóth L.: Restricted linear congruences. J. Number Theory 171, 128–144 (2017).

    Article  MathSciNet  Google Scholar 

  5. Bibak, K., Milenkovic, O.: Weight enumerators of some classes of deletion correcting codes. In: Proceedings of the 2018 IEEE International Symposium on Information Theory—ISIT, pp. 431–435. (2018)

  6. Bourgain J., Dilworth S., Ford K., Konyagin S., Kutzarova D.: Explicit constructions of RIP matrices and related problems. Duke Math. J. 159, 145–185 (2011).

    Article  MathSciNet  Google Scholar 

  7. Boyer, M.: Extended GHZ n-player games with classical probability of winning tending to 0. arXiv:quant-ph/0408090 (2004).

  8. Candès E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346, 589–592 (2008).

    Article  MathSciNet  Google Scholar 

  9. Candès E.J., Romberg J.K., Tao T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006).

    Article  MathSciNet  Google Scholar 

  10. Candès E.J., Tao T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005).

    Article  MathSciNet  Google Scholar 

  11. Chen H.: Excursions in Classical Analysis: Pathways to Advanced Problem Solving and Undergraduate Research. Mathematical Association of America, Washington, DC (2010).

    Book  Google Scholar 

  12. Delsarte Ph, Piret Ph: Spectral enumerators for certain additive-error-correcting codes over integer alphabets. Inf. Control 48, 193–210 (1981).

    Article  MathSciNet  Google Scholar 

  13. Frankl P., Füredi Z.: Solution of the Littlewood–Offord problem in high dimensions. Ann. Math. 128(2), 259–270 (1988).

    Article  MathSciNet  Google Scholar 

  14. Gabrys R., Yaakobi E., Milenkovic O.: Codes in the Damerau distance for deletion and adjacent transposition correction. IEEE Trans. Inf. Theory 64, 2550–2570 (2018).

    Article  MathSciNet  Google Scholar 

  15. Ginzburg B.D.: A certain number-theoretic function which has an application in coding theory. Probl. Kibernet. 19, 249–252 (1967). Russian.

    MathSciNet  MATH  Google Scholar 

  16. Griggs J.R.: On the distribution of sums of residues. Bull. Am. Math. Soc. (N.S.) 28, 329–333 (1993).

    Article  MathSciNet  Google Scholar 

  17. Helberg A.S.J., Ferreira H.C.: On multiple insertion/deletion correcting codes. IEEE Trans. Inf. Theory 48, 305–308 (2002).

    Article  Google Scholar 

  18. Helleseth T., Kløve T.: On group-theoretic codes for asymmetric channels. Inf. Control 49, 1–9 (1981).

    Article  MathSciNet  Google Scholar 

  19. Kelarev A., Ryan J., Rylands L., Seberry J., Yi X.: Discrete algorithms and methods for security of statistical databases related to the work of Mirka Miller. J. Discret. Algorithms 52(53), 112–121 (2018).

    Article  MathSciNet  Google Scholar 

  20. Kløve T.: Error Correcting Codes for the Asymmetric Channel. Tech. Rep., Department of Informatics, University of Bergen, Bergen (1995).

    Google Scholar 

  21. Korobov N.M.: Exponential Sums and their Applications. Springer, Dordrecht (1992).

    Book  Google Scholar 

  22. Le T.A., Nguyen H.D.: New multiple insertion/deletion correcting codes for non-binary alphabets. IEEE Trans. Inf. Theory 62, 2682–2693 (2016).

    Article  MathSciNet  Google Scholar 

  23. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals (in Russian), Dokl. Akad. Nauk SSSR 163 (1965), 845–848. English translation in Soviet Physics Dokl. 10, 707–710 (1966).

  24. Littlewood J.E., Offord A.C.: On the number of real roots of a random algebraic equation. Mat. Sb. 12, 277–286 (1943).

    MathSciNet  MATH  Google Scholar 

  25. Lovett S.: Additive combinatorics and its applications in theoretical computer science. Theory Comput. Grad. Surv. 8, 1–55 (2017).

    Google Scholar 

  26. Madiman, M., Marcus, A., Tetali, P.: Information-theoretic inequalities in additive combinatorics, In: Proc. of the 2010 IEEE Information Theory Workshop, pp. 1–4 (2010).

  27. Madiman M., Marcus A., Tetali P.: Entropy and set cardinality inequalities for partition-determined functions. Random Struct. Algorithms 40, 399–424 (2012).

    Article  MathSciNet  Google Scholar 

  28. McEliece R.J., Rodemich E.R.: The Constantin-Rao construction for binary asymmetric error-correcting codes. Inform. Contr. 44, 187–196 (1980).

    Article  MathSciNet  Google Scholar 

  29. Plagne A., Schmid W.A.: An application of coding theory to estimating Davenport constants. Des. Codes Cryptogr. 61, 105–118 (2011).

    Article  MathSciNet  Google Scholar 

  30. Ruzsa I.Z.: Sumsets and Entropy. Random Structures Algorithms 34, 1–10 (2009).

    Article  MathSciNet  Google Scholar 

  31. Schoeny C., Wachter-Zeh A., Gabrys R., Yaakobi E.: Codes correcting a burst of deletions or insertions. IEEE Trans. Inf. Theory 63, 1971–1985 (2017).

    Article  MathSciNet  Google Scholar 

  32. Sloane, N.J.A.: On single-deletion-correcting codes, In Codes and Designs, Ohio State University, May 2000 (Ray-Chaudhuri Festschrift), Arasu, K.T., Seress, A., (editors), Walter de Gruyter, Berlin, pp. 273–291 (2002).

  33. Stanley, R.P., Yoder, M.F.: A study of Varshamov codes for asymmetric channels. Jet Propulsion Laboratory, Technical Report 32–1526, Vol. XIV, 117–123 (1973).

  34. Tao T.: Sumset and inverse sumset theory for Shannon entropy. Comb. Probab. Comput. 19, 603–639 (2010).

    Article  MathSciNet  Google Scholar 

  35. Tao T., Vu V.: Additive Combinatorics. Cambridge University Press, Cambridge (2006).

    Book  Google Scholar 

  36. Varshamov, R.R., Tenengolts, G.M.: A code which corrects single asymmetric errors (in Russian), Avtomat. i Telemeh. 26 (1965), 288–292. English translation in Automat. Remote Control 26, 286–290 (1965).

  37. Vaughan R.C., Wooley T.D.: On a problem related to one of Littlewood and Offord. Q. J. Math. Oxf. Ser. 42(2), 379–386 (1991).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for a careful reading of the paper and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khodakhast Bibak.

Additional information

Communicated by V. A. Zinoviev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibak, K. Deletion correcting codes meet the Littlewood–Offord problem. Des. Codes Cryptogr. 88, 2387–2396 (2020). https://doi.org/10.1007/s10623-020-00787-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00787-y

Keywords

Mathematics Subject Classification

Navigation