Skip to main content
Log in

Long-Term Variations in the Parameters of the Middle and Upper Atmosphere and Ionosphere (Review)

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The article reviews the main publications from the last eight years on long-term trends in the parameters of the middle atmosphere, thermosphere, and ionosphere. It is shown that the negative temperature trends in the middle atmosphere have been reliably established based on observations by various methods. An analysis of satellite orbits in the thermosphere showed negative density trends at heights of ~400 km. Unexpectedly high negative trends in ion temperature Ti above ~220 km obtained with the incoherent-scatter method. The same measurements high positive trends in Ti at the heights of the F1 layer. There are discrepancies in the estimates of the absolute value of the negative trends in the critical frequency and height of the F2 layer; however, these trends are high in the opinion of the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Beig, G., Overview of the mesospheric temperature trend and factors of uncertainty, Phys. Chem. Earth, 2002, vol. 27, pp. 509–519.

    Google Scholar 

  2. Beig, G., Advances in long-term trends in LT region and its linkages to stratospheric ozone recovery, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  3. Beig, G., Trends in temperature of the mesosphere and its linkages with stratosphere, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  4. Berger, U., Lubken, F.-J., Baumgarten, G., and Feidler, J., Trends in mesospheric ice layers in the Northern Hemisphere during 1961–2013, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  5. Bjoland, L.M., Ogawa, Y., Hall, C., Rietveld, M., Løvhaug, U.P., La Hoz, C., and Miyaoka, H., Long-term variations and trends in the polar E-region, J. Atmos.-Terr. Phys., 2017, vol. 163, pp. 85–90.

    Google Scholar 

  6. Bremer, J. and Berger, U., Mesospheric temperature trends derived from ground-based LF phase-height observations at mid-latitudes: Comparison with model simulations, J. Atmos. Sol.-Terr. Phys., 2002, vol. 64, pp. 805–816.

    Google Scholar 

  7. Bremer, J., Damboldt, vol., Mielich, J., and Suessmann, P., Comparing long-term trends in the ionospheric F2 region with two different methods, J. Atmos. Sol.-Terr. Phys., 2012, vol. 77, pp. 174–185.

    Google Scholar 

  8. Chen, Y., Libo, L., Le, H., and Wan, W., Does the F10.7 index correctly describe solar EUV flux during the deep solar minimum of 2007–2009, J. Geophys. Res., 2011, vol. 116, A04304.

    Google Scholar 

  9. Chen, Y., Libo, L., Le, H., and Wan, W., Ionospheric variations under extremely low solar EUV condition, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  10. Clilverd, M.A., Duthie, R., Rodger, C.J., Hardman, R.L., and Yearby, K.H., Long-term climate change in the D‑region, Sci. Rep., 2017, vol. 7, p. 16683. https://doi.org/10.1038/s41598-017-16891-4

    Article  Google Scholar 

  11. Cnossen, I. and Franzke, C., The role of the Sun in long-term change in the F2 peak ionosphere: New insights from ensemble empirical mode decomposition (EEMD) and numerical modeling, J. Geophys. Res., 2014, vol. 119, no. 10, pp. 8610–8623.

    Google Scholar 

  12. Damboldt, T. and Suessmann, P., Consolidated database of worldwide measured monthly medians of ionospheric characteristics foF2 and M(3000)F2, INAG Bull. Web, 2012, INAG-73.

  13. Danilov, A.D., Time and spatial variations in the ratio of nighttime and daytime critical frequencies of the F2 layer, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1201–1212.

    Google Scholar 

  14. Danilov, A.D., Long-term trends in the upper atmosphere and ionosphere (a review), Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 3, pp. 271–291.

  15. Danilov, A.D., Seasonal and diurnal variations in foF2 trends, J. Geophys. Res., 2015, vol. 120. https://doi.org/10.1002/2014JA020971

  16. Danilov, A.D., Global changes in the parameters of the Earth’s upper atmosphere and ionosphere, in Sistemnyi monitoring ionosfery (System Monitoring of the Ionosphere), Kotonaev, N.G., Ed., Moscow: Fizmatlit, 2019, pp. 354–416.

  17. Danilov, A.D. and Konstantinova, A.V., Behavior of parameters of the ionospheric F2 layer at the turn of the centuries: 1. Critical frequency, Geomagn. Aeron. (Engl. Transl.), 2013a, vol. 53, no. 3, pp. 345–355.

  18. Danilov, A.D. and Konstantinova, A.V., Behavior of parameters of the ionospheric F2 layer at the turn of the centuries: 2. Height of the layer, Geomagn. Aeron. (Engl. Transl.), 2013b, vol. 53, no. 4, pp. 457–470.

  19. Danilov, A.D. and Konstantinova, A.V., Trends in the F2 layer parameters at the end of the 1990s and the beginning of the 2000s, J. Geophys. Res., 2013c, vol. 118, no. 12, pp. 5947–5964.

    Google Scholar 

  20. Danilov, A.D. and Konstantinova, A.V., Reduction of the atomic oxygen content in the upper atmosphere, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 2, pp. 224–229.

  21. Danilov, A.D. and Konstantinova, A.V., Variations in foF2 trends with season and local time, Geomagn. Aeron. (Engl. Transl.), 2015a, vol. 55, no. 1, pp. 51–58.

  22. Danilov, A.D. and Konstantinova, A.V., Comparison of trends in parameters of the F2 layer obtained by various authors, Geomagn. Aeron. (Engl. Transl.), 2015b, vol. 55, no. 4, pp. 457–466.

  23. Danilov, A.D. and Konstantinova, A.V., T Trends in the critical frequency foF2 after 2009, Geomagn. Aeron. (Engl. Transl.), 2016a, vol. 56, no. 3, pp. 302–310.

  24. Danilov, A.D. and Konstantinova, A.V., Long-term changes in the relation between foF2 and hmF2, Geomagn. Aeron. (Engl. Transl.), 2016b, vol. 56, no. 5, pp. 577–584.

  25. Danilov, A.D. and Konstantinova, A.V., Diurnal and seasonal variations in trends in the E-layer critical frequency, Geomagn. Aeron. (Engl. Transl.), 2018a, vol. 58, no. 5, pp. 629–637.

  26. Danilov, A.D. and Konstantinova, A.V., Further analysis of trends in the E-layer critical frequency at st. Juliusruh, Geliogeofiz. Issled., 2018b, no. 19, pp. 14–46.

  27. Danilov, A.D. and Konstantinova, A.V., Trends in foF2 and the 24th cycle of solar activity, Geliogeofiz. Issled., 2019a, no. 23, pp. 40–47.

  28. Danilov, A.D. and Konstantinova, A.V., Diurnal and seasonal variations in long-term changes in the E-layer critical frequency, Adv. Space Res., 2019b, vol. 63, pp. 359–370.

    Google Scholar 

  29. Danilov, A.D. and Konstantinova, A.V., Trends in foF2 and the 24th solar activity cycle, Adv. Space Res., 2020, vol. 65, pp. 959–965.

    Google Scholar 

  30. DeLand, M.T., Extending the long-term PMC record with OMPS data, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  31. Deng, Y., Impact of NO cooling and gravity wave on the long-term trend in the upper atmosphere: GITM simulations, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  32. Emmert, J.T., Thermospheric density climate and climate changes, in The 7th Workshop on Long-Term Changes and Trends in the Atmosphere, Buenos-Aires, Argentina, 2012.

  33. Emmert, J.T., Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag, J. Geophys. Res., 2015, vol. 120, pp. 2940–2950.

    Google Scholar 

  34. Emmert, J.T., Fejer, B.G., Fesen, C.D., Sheperd, G.G., and Solheim, B.H., Climatology of middle- and low-latitude daytime F-region disturbance in neutral wind measured by Wind Imaging Interferometer (WINDII), J. Geophys. Res., 2001, vol. 24, pp. 701–706.

    Google Scholar 

  35. Emmert, J.T., Picone, J.M., Lean, J.L., and Knowles, S.H., Global change in the thermosphere: Compelling evidence of a secular decrease in density, J. Geophys. Res., 2004, vol. 109, A02301. https://doi.org/10.1029/2003JA010176

    Article  Google Scholar 

  36. Emmert, J.T., Stevens, M.H., Bernath, P.F., Drob, D.P., and Boone, C.D., Observations of increasing carbon dioxide concentration in Earth’s thermosphere, Nat. Geosci., 2012, vol. 5, pp. 868–871.

    Google Scholar 

  37. Emmert, J.T., Mannucci, A.J., McDonald, S.E., and Vergados, P., Attribution of interminimum changes in global and hemispheric total electron content, J. Geophys. Res.: Space, 2017, vol. 122, pp. 2424–2439.

    Google Scholar 

  38. Fagre, M., Zossi, B.S., Saavedra, Z., and Elias, A.G., On some consequences of upper atmosphere cooling over HF signal propagation, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  39. Fiedler, J., Baumgarten, G., Berger, U., and Lubken, F.-J., Long-term variations of noctilucent clouds at ALOMAR, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  40. Friedrich, M. and Pock, Ch., Long-term trends in mesospheric electron densities, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  41. Friedrich, M. and Torkar, K.M., Long-term trends and other residual features of the lower ionosphere, in Proc. 15th ESA Symposium on European Rocket and Balloon Programs and Related Research, Biarritz, France, 2001, ESA SP-471.

  42. Garcia, R., López-Puertas, M., Funke, B., Kinnison, D.E., Marsh, D.R., Smith, A.K., and Gonzales-Galindo, F., On the distribution of CO2 and CO in the mesosphere and lower thermosphere, J. Geophys. Res., 2014, vol. 119, pp. 5700–5718.

    Google Scholar 

  43. Garcia, R., López-Puertas, M., Funke, B., Kinnison, D.E., Marsh, D.R., and Qian, L., On the secular trend of COx and CO2 in the lower thermosphere, J. Geophys. Res., 2016, vol. 121, pp. 3634–3644.

    Google Scholar 

  44. Garcia, R.R., Yue, J., and Russell, J.M., Middle atmosphere temperature trends in the twentieth and twenty first centuries simulated with the Whole Atmosphere Community Climate Model (WACCM), J. Geophys. Res.Space, 2019, vol. 124, pp. 7984–7993.

    Google Scholar 

  45. Gnabahou, D.A. and Elias, A., Long-term trend of foF2 at a West African equatorial station, in The 7th Workshop on Long-Term Changes and Trends in the Atmosphere, Buenos-Aires, Argentina, 2012.

  46. de Haro Barbás, B.F. and Elias, A.G., Effect of the inclusion of solar cycle 24 in the calculation of foF2 long-term trend for two Japanese ionospheric stations, Pure Appl. Geophys., 2020, vol. 177, pp. 1071–1078. https://doi.org/10.1007/s00024-019-02307-z

    Article  Google Scholar 

  47. de Haro Barbás, B.F., Elias, A.G., Shibasaki, K., and Sousa, J.R., foF2 long-term trends for periods including solar cycle 23, in The 8th Workshop on Long-Term Changes and Trends in the Atmosphere, Cambridge, England, 2014.

  48. Hierl, P.M., Dotan, I., Seeley, J.V., Van Doren, J.M., Morris, R.A., and Viggiano, A.A., Rate constants for the reactions of O+ with N2 and O2 as a function of temperature (300–1800 K), J. Chem. Phys., 1997, vol. 106, no. 9, pp. 3540–3544.

    Google Scholar 

  49. Hoffmann, P. and Chau, J.L., Trends in mesospheric winds and gravity waves at Northern middle and polar latitudes, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  50. Jacobi, Ch., Geissler, Ch., Lilienthal, F., and Krug, A., Long-term trends of mesosphere/lower thermosphere prevailing winds at northern midlatitudes, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  51. Jakowsky, N., Hoque, M.M., Mielich, J., and Hall, Ch., Equivalent slab thickness of the ionosphere over Europe as an indicator of long-term changes in the thermosphere, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  52. Keating, G.M., Tolson, R.H., and Bradford, M.S., Evidence of long-term global decline in the Earth’s thermospheric densities apparently related to anthropogenic effects, Geophys. Res. Lett., vol., 2000, vol. 27, pp. 1523–1526.

  53. Khaitov, R., Kolesnik, S., and Sarychev, V., Seasonal, diurnal variations in critical frequency of the F2-layer over middle latitudes, in The 7th Workshop on Long-Term Changes and Trends in the Atmosphere, Buenos-Aires, Argentina, 2012.

  54. Konstantinova, A.V. and Danilov, A.D., Choice of series of initial data in deriving trends in the ionospheric F2-layer parameters, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 3, pp. 344–352.

  55. Konstantinova, A.V. and Danilov, A.D., Trends in hmF2 and the 24th cycle of solar activity, Geliogeofiz. Issled., 2019, no. 24, pp. 30–34.

  56. Laštovička, J., A review of progress in trends in the mesosphere–thermosphere–ionosphere system, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  57. Laštovička, J., A review of recent progress in trends in the upper atmosphere, J. Atmos. Sol.-Terr. Phys., 2017, vol. 163, pp. 2–13.

    Google Scholar 

  58. Laštovička, J., Akmaev, R.A., Beig, G., et al., Emerging pattern of global change in the upper atmosphere and ionosphere, Ann. Geophys., 2008, vol. 26, no. 5, pp. 1255–1268.

    Google Scholar 

  59. Laštovička, J., Solomon, S.C., and Qian, L., Trends in the neutral and ionized upper atmosphere, Space Sci. Rev., 2012, vol. 168, pp. 113–145.

    Google Scholar 

  60. Laštovička, J., Burešová, D., Kouba, D., and Križan, P., Stability of solar correction for calculating ionospheric trends, Ann. Geophys., 2016, vol. 34, no. 12, pp. 1191–1196.

    Google Scholar 

  61. Laštovička, J., Urbar, J., and Kozubek, M., Long-term trends in the total electron content, Geophys. Rev. Lett., vol., 2017, vol. 44, pp. 8168–8172.

  62. Latteck, R., Long-term changes of polar mesospheric summer echoes at Andoya, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  63. Lean, J., Emmert, J.T., Picone, J.M., and Meier, R.R., Global and regional trends in ionospheric electron content, J. Geophys. Res., 2011, vol. 116, A00H04. https://doi.org/10.1029/2010JA016378

    Article  Google Scholar 

  64. Liu, L., Possible trend reveled from meteor radar observations at Mohe and Beijing of China, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  65. Liu, H.-L., Bardeen, C.G., Foster, B.vol., Lauritzen, P., Liu, J., Lu, G., and Wang, W., Development and validation of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X 2.0), J. Adv. Model. Earth Syst., 2018, vol. 10, pp. 381–402.

    Google Scholar 

  66. Liu, X., Yue, J., Xu, J., Garcia, R.R., Russell III, J.M., Mlynczak, M., Wu, D.L., and Nakamura, T., Variations of global gravity waves derived from 14 years of SABER temperature observations, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  67. Lübken, F.-J., Berger, U., and Baumgarten, G., Temperature trends in the midlatitude summer mesosphere, J. Geophys. Res., 2013, vol. 118, no. 24, pp. 13347–13360.

    Google Scholar 

  68. Lübken, F.-J., Berger, U., and Baumgarten, G., On the anthropogenic impact on long-term evolution of noctilucent clouds, Geophys. Res. Lett., vol., 2018a, vol. 45, pp. 6681–6689.

  69. Lübken, F.-J., Berger, U., and Baumgarten, G., On the anthropogenic impact on long term evolution of noctilucent clouds, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018b.

  70. Marcos, F.A., Wise, J.O., Kendra, M.J., Grossbard, N.J., and Bowman, B.R., Detection of a long-term decrease in thermospheric neutral density, Geophys. Res. Lett., 2005, vol. 32, L04103. https://doi.org/10.1029/2004GL021269

    Article  Google Scholar 

  71. Mielich, J. and Bremer, J., Long-term trends in the ionospheric F2 region with two different solar activity indices, Ann. Geophys., 2013, vol. 31, no. 2, pp. 291–303.

    Google Scholar 

  72. Mikhailov, A.V., The geomagnetic control of the F2-later parameter long-term trends, Phys. Chem. Earth, 2002, vol. 27, pp. 595–606.

    Google Scholar 

  73. Mikhailov, A.V. and Perrone, L., Geomagnetic control of the mid-latitude foF1 and foF2 long-term variations: Physical interpretation using European observations, J. Geophys. Res., 2016, vol. 121, pp. 7193–7203.

    Google Scholar 

  74. Mikhailov, A.V. and Perrone, L., Summer noontime hmF2 long term trends inferred from foF1 and foF2 ionosonde observations in Europe, J. Geophys. Res.Space, 2018, vol. 123, no. 8, pp. 6703–6713.

    Google Scholar 

  75. Mikhailov, A.V., Skoblin, M.G., and Forster, M., Daytime F2-layer positive storm effect at middle and lower latitudes, Ann. Geophys., 1995, vol. 13, no. 5, pp. 532–540.

    Google Scholar 

  76. Mikhailov, A.V., Perrone, L., and Nusinov, A.A., A mechanism of mid-latitude noontime foE long-term variations inferred from European observations, J. Geophys. Res., 2017, vol. 122, pp. 4466–4473.

    Google Scholar 

  77. Mlynczak, V., Hunt, L., Marshall, B.T., et al., Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument, J. Geophys. Res., 2010, vol. 115, A03309. https://doi.org/10.1029/2009JA014713

    Article  Google Scholar 

  78. Mlynczak, M., Hunt, L., Yue, J., and Solomon, S., Trends in upper atmosphere energetics and composition – past, present, and future, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  79. Nath, O., Seasonal, interannual and long-term variabilities and tendencies of water vapor in the upper stratosphere and mesospheric region over tropics (30° N–30° S), J. Atmos. Sol.-Terr. Phys., 2018, vol. 167, pp. 23–29.

    Google Scholar 

  80. Ogawa, Y. and Bjoland, L., Long-term variations and trends in the polar ionosphere and thermosphere, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  81. Oliver, W.L., Holt, J.M., Zhang, S.-R., and Goncharenko, L.P., Long-term trends in thermospheric neutral temperature and density above Millstone Hill, J. Geophys. Res., 2014, vol. 119, pp. 7940–7946.

    Google Scholar 

  82. Perrone, L. and Mikhailov, A.V., Geomagnetic control of the midlatitude foF1 and foF2 long-term variations: Recent observations in Europe, J. Geophys. Res., 2016a, vol. 121, pp. 7183–7192.

    Google Scholar 

  83. Perrone, L. and Mikhailov, A., Geomagnetic control of the midlatitude foF1 and foF2 long-term variations: Recent observations and interpretation, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016b.

  84. Perrone, L. and Mikhailov, A., Long-term variations of exospheric temperature inferred from foF1 observations: A comparison to ISR Ti trend estimates, J. Geophys. Res., 2017, vol. 122, pp. 8883–8892.

    Google Scholar 

  85. Perrone, L. and Mikhailov, A.V., Reply to comments by S. Zhang, J.M. Holt, P.J. Erickson, and L.P. Goncharenko on the paper “Long-term variations of exospheric temperature inferred from foF1 observations: A comparison to ISR Ti trend estimates” by L. Perrone and A.V. Mikhailov, J. Geophys. Res.Space, 2018, vol. 123, pp. 8895–8907.

    Google Scholar 

  86. Perrone, L. and Mikhailov, A.V., Long-term variations of the column atomic oxygen abundance in the upper atmosphere inferred from ionospheric observations, J. Geophys. Res.Space, 2019, vol. 124, no. 7, pp. 6305–6312.

    Google Scholar 

  87. Peters, D.H.W. and Entzian, G., Long-term variability of 50 years of standard phase height measurements at Kühlungsborn, Germany, Adv. Space Res., 2015, vol. 55, pp. 1764–1774.

    Google Scholar 

  88. Peters, D.H.W., Entzian, G., and Keckhut, P., Mesospheric temperature trends derived from standard phase–height measurements, J. Atmos. Sol.-Terr. Phys., 2017, vol. 163, pp. 23–30.

    Google Scholar 

  89. Pokhunkov, A.A., Rybin, V.V., and Tulinov, G.F., Quantitative characteristics of long-term changes in parameters of the upper atmosphere of the Earth over the 1966–1992 period, Cosmic Res., 2009, vol. 47, no. 6, pp. 480–490.

    Google Scholar 

  90. Portnyagin, Yu.I., Merzlyakov, E.G., Sokolova, T.V., Jacobi, T.V., Kurschner, D., Manson, A., and Meek, C., Long-term trends and year-to-year variability of midlatitude mesosphere/lower thermosphere winds, J. Atmos. Sol.-Terr. Phys., 2006, vol. 68, pp. 1890–1901.

    Google Scholar 

  91. Qian, L., Roble, R.G., Solomon, S.C., and Kane, T.J., Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24, Geophys. Res. Lett., vol., 2006, vol. 33, no. 23, L23705. https://doi.org/10.1029/2006GL027185

  92. Qian, L., Solomon, S., and Yue, J., Impact of carbon dioxide trends on thermosphere–ionosphere climate, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  93. Quack, B., Tegtmeier, S., Ziska, Z., Krueger, K., and Sinnhube, B.-M., Future emissions of oceanic halocarbons and their influence on stratospheric ozone, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  94. Ratnam, M.V., Long-term variability in UTLS aerosols and trace gases over Indian region observed by ground based and space borne measurements, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  95. Reid, I., Spargo, A., and Murphy, D., Long-term observations of the MLT region at Adelaide (34.6° S) and Davis Station (68.6° S), in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  96. Rezac, L., Yue, J., Yongxiao, J., Russell III, J.M., Garcia, R., López-Puertas, M., and Mlynczak, M.G., On long-term SABER CO2 trends and effects due to nonuniform space and time sampling, J. Geophys Res.: Space, 2018, vol. 123, no. 9, pp. 7958–7967.

    Google Scholar 

  97. Richards, P.G., Reexamination of ionospheric photochemistry, J. Geophys. Res., 2011, vol. 116, no. A8, A08307. https://doi.org/10.1029/2011JA016613

    Article  Google Scholar 

  98. Rishbeth, H. and Edwards, R., The isobaric F2-layer, J. Atmos. Terr. Phys., 1989, vol. 51, no. 4, pp. 321–338.

    Google Scholar 

  99. Rishbeth, H. and Roble, R.G., Cooling of the upper atmosphere by enhanced greenhouse gases—modeling of thermospheric and ionospheric effects, Planet. Space Sci., 1992, vol. 40, no. 7, pp. 1011–1026.

    Google Scholar 

  100. Roble, R.G. and Dickinson, R.E., How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and lower thermosphere?, Geophys. Res. Lett., 1989, vol. 16, pp. 1441–1444.

    Google Scholar 

  101. Roininen, L., Ulich, T., Laine, M., Rey, N., and Rouset, H.I., Time-varying ionosonde trend: Case study of Sodankuylä observatory hmF2, in The 8th Workshop on Long-Term Changes and Trends in the Atmosphere, Cambridge, England, 2014.

  102. Rojas Villaba, E. and Milla, M., A long-term trend study of the F-region peak height above Jicamarca, in The 7th Workshop on Long-Term Changes and Trends in the Atmosphere, Buenos-Aires, Argentina, 2012.

  103. Sharma, K. and Chandra, S., Long-term changes in the ionosphere at low latitudes: Impact of greenhouse gases, in The 7th Workshop on Long-Term Changes and Trends in the Atmosphere, Buenos-Aires, Argentina, 2012.

  104. Sharma, S., Chandra, H., and Vaishnav, R., Long-term middle atmosphere trends observed by lidar and satellite over sub-tropical location during 1997–2016, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  105. She, C.-Y., Yuan, T., Yan, Z.A., Krueger, D.A., and Hu, X., Long-term change and trend on nocturnal and daytime temperatures in midlatitude mesopause region atmosphere based on 28 years of Na lidar observations, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  106. Sinnhuber, B.-M., The polar stratosphere in a changing climate, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  107. Smith, A.K., Marsh, D.R., Mlynczak, M.G., and Mast, J.C., Temporal variations of atomic oxygen in the upper mesosphere from SABER, J. Geophys. Res., 2010, vol. 115, D18309. https://doi.org/10.1029/2009JD013434

    Article  Google Scholar 

  108. Sofieva, V., Long-term trends in stratospheric ozone, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  109. Solomon, S.C., Qian, L., and Roble, R.G., New 3D simulations of climate change in the thermosphere, J. Geophys. Res., 2015, vol. 120, no. 3, pp. 2183–2193.

    Google Scholar 

  110. Solomon, S., Liu, H., March, D., McInerdy, J., Qian, L., and Vitt, F., Thermosphere–ionosphere response to atmospheric climate change modeled by WACCM-X, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  111. Solomon, S., Liu, H., Marsh, D., McInerdy, J., Qian, L., and Vitt, F., Whole atmosphere simulation of anthropogenic climate change, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  112. Sounders, A., Lewis, H., and Swinerd, G., Further evidence of long-term thermospheric density change using a new method of satellite ballistic coefficient estimation, J. Geophys. Res., 2011, vol. 116, A00H10. https://doi.org/10.1029/2010JA016358

    Article  Google Scholar 

  113. Su, Y., Yue, J., Hervig, M., Marshall, vol., Smith, A., Garcia, R., Guo, D., Guo, S., Siskind, D., and Russell, I.J., Carbon dioxide in the polar stratosphere from AIM/SOFIE, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  114. Taubenheim, J., von Cossart, G., and Entzian, G., Global climate changes and the lower ionosphere, in Tezisy 3‑go Seminara KAPG po meteorologicheskim effektam v ionosfere (Abstracts of the 3rd CAPG Workshop on Meteorological Effects in the Ionosphere), Sofia, 1988.

  115. Taubenheim, J., von Cossart, G., and Entzian, G., Evidence of CO2-induced progressive cooling of the middle atmosphere derived from radio observations, Adv. Space Res., 1990, vol. 10, no. 10, pp. 171–174.

    Google Scholar 

  116. Venchiarutti, V., Zossi, M., and Elias, G., The effect of neutral density long-term variation on satellite lifetime using a simple classical mechanics formulation, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  117. Wang, W., Qian, L., Burns, A.G., Liu, J., and Zhang, S.A., Long-term changes in ionospheric temperatures, in American Geophysical Union Fall Meeting, 2018, abstract #SA13B-2770.

  118. Yuan, T., Solomon, S.C., She, C.-Y., Krueger, D.A., and Liu, H.-L., The long-term trends of nocturnal mesopause temperature and altitude revealed by Na lidar observations between 1990 and 2018 at midlatitude, J. Geophys. Res.: Atmos., 2019, vol. 124, pp. 5970–5980.

    Google Scholar 

  119. Yue, J., Jan, Y., Rezac, L., Garcia, R., López-Puertas, M., Mlynczak, M., and Russel, J., Increasing carbon dioxide concentration in the upper atmosphere observed by SABER, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016.

  120. Yue, J., Rezac, L., Yongxiao, J., Russell III, J.M., Garcia, R., López-Puertas, M., and Mlynczak, M.G., On long-term trends of SABER CO2 with WACCM (forward modeling), in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  121. Zhang, J., Tian, W., and Xie, F., Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  122. Zhang, S., Ionospheric climate change: A report on the ISSI team research efforts, in The 10th Workshop on Long-Term Changes and Trends in the Atmosphere, Hefei, China, 2018.

  123. Zhang, S.-R. and Holt, J.M., Long-term ionospheric cooling: Dependency on local time, season, solar activity, and geomagnetic activity, J. Geophys. Res., 2013, vol. 118, no. 6, pp. 3719–3730.

    Google Scholar 

  124. Zhang, S.R., Holt, J.M., Erickson, P.J., Goncharenko, L.P., Nicolls, M.J., McCready, M., and Kelly, J., Ionospheric ion temperature climate and upper atmospheric long-term cooling, J. Geophys. Res., 2016a, vol. 121, no. 9, pp. 8951–8968.

    Google Scholar 

  125. Zhang, S.R., Holt, J.M., Erickson, P., Goncharenko, L., Nicolls, M., McCready, M., and Kelly, J., Strong ionospheric long-term cooling measured by multiple incoherent scatter radars, in The 9th Workshop on Long-Term Changes and Trends in the Atmosphere, Kühlungsborn, Germany, 2016b.

  126. Zhang, S.-R., Holt, J.M., Erickson, P.J., and Goncharenko, L.P., Comments on “Long-term variations of exospheric temperature inferred from foF1 observations: A comparison to ISR Ti trend estimates” by Perrone and Mikhailov, J. Geophys. Res.: Space, 2018, vol. 123, pp. 4467–4473.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-05-80023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Danilov or A. V. Konstantinova.

Additional information

Translated by A. Danilov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, A.D., Konstantinova, A.V. Long-Term Variations in the Parameters of the Middle and Upper Atmosphere and Ionosphere (Review). Geomagn. Aeron. 60, 397–420 (2020). https://doi.org/10.1134/S0016793220040040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220040040

Navigation