Skip to main content
Log in

Analytical Model of a Seismogenic Electric Field According to Data of Measurements in the Surface Layer of the Midlatitude Atmosphere and Calculation of Its Magnitude at the Ionospheric Level

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Perturbations of the vertical component of an electric field of seismogenic origin near the Earth’s surface prior to some earthquakes are modeled analytically based on data from measurements in the surface layer of the atmosphere at midlatitudes, and the field’s magnitude at the ionospheric level is calculated with allowance for the inclination of geomagnetic lines of force. An analytical approximation of the seismogenic perturbation of the vertical component of the electric field on the Earth’s surface is obtained. The approximation adequately describes the data from those measurements. It is shown that, ~3.5 h before the earthquake on March 20, 2008, in the border region of the Chinese provinces of Xinjiang and Xizang, which had a with a magnitude of M = 7.2, the detection of a quasi-static electric field with a seismogenic nature and a magnitude of 0.44 to 0.88 mV/m can be hypothetically expected over the epicentral area in the ionosphere; the field is perpendicular to magnetic field lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ampferer, M., Denisenko, V.V., Hausleitner, W., Krauss, S., Stangl, G., Boudjada, M.Y., and Biernat, H.K., Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer, Ann. Geophys., 2010, vol. 28, no. 3, pp. 779–787.

    Article  Google Scholar 

  2. Baumgaertner, A.J.G., Thayer, J.P., Neely, R.R., and Lucas, G., Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1 (WACCM) model simulations, J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 9221–9232. https://doi.org/10.1002/jgrd.50725

    Article  Google Scholar 

  3. Choudhury, A., Guha, A., De, B.K., and Roy, R., A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India, Ann. Geophys., 2013, vol. 56, no. 3, R0331. https://doi.org/10.4401/ag-6235

    Article  Google Scholar 

  4. Cole, Jr., R.K. and Pierce, E.T., Electrification in the Earth’s atmosphere for altitudes between 0 and 100 kilometers, J. Geophys. Res., 1965, vol. 70, no. 12, pp. 2735–2749. https://doi.org/10.1029/JZ070i012p02735

    Article  Google Scholar 

  5. Denisenko, V.V., Boudjada, M.Y., Horn, M., Pomozov, E.V., Biernat, H.K., Schwingenschuh, K., Lammer, H., Prattes, G., and Cristea, E., Ionospheric conductivity effects on electrostatic field penetration into the ionosphere, Nat. Hazards Earth Syst. Sci., 2008, vol. 8, no. 5, pp. 1009–1017. https://doi.org/10.5194/nhess-8-1009-2008

    Article  Google Scholar 

  6. Denisenko, V.V., Ampferer, M., Pomozov, E.V., Kitaev, A.V., Hausleitner, W., Stangl, G., and Biernat, H.K., On electric field penetration from ground into the ionosphere, J. Atmos. Sol.-Terr. Phys., 2013, vol. 102, pp. 341–353. https://doi.org/10.1016/j.jastp.2013.05.019

    Article  Google Scholar 

  7. Denisenko, V.V., Nesterov, S.A., Boudjada, M.Y., and Lammere, H., A mathematical model of quasistationary electric field penetration from ground to the ionosphere with inclined magnetic field, J. Atmos. Sol.-Terr. Phys., 2018, vol. 179, pp. 527–537. https://doi.org/10.1016/j.jastp.2018.09.002

    Article  Google Scholar 

  8. Dobrovolsky, I.R., Zubkov, S.I., and Myachkin, V.I., Estimation of the size of earthquake preparation zones, Pure Appl. Geophys., 1979, vol. 117, no. 5, pp. 1025–1044.

    Article  Google Scholar 

  9. Hao, J., Tang, T.M., and Li, D.R., Progress in the research of atmospheric electric field anomaly as an index for short-impending prediction of earthquakes, J. Earthquake Predict. Res., 2000, vol. 8, no. 3, pp. 241–255.

    Google Scholar 

  10. Hegai, V.V., Kim, V.P., and Liu, J.Y., On a possible seismo–magnetic effect in the topside ionosphere, Adv. Space Res., 2015, vol. 56, no. 8, pp. 1707–1713. https://doi.org/10.1016/j.asr.2015.07.034

    Article  Google Scholar 

  11. Hegai, V.V., On the correlation between strong earthquakes and solar activity level in cycles 21, 22, and 23, in Astronomiya-2018 (Astronomy-2018), vol. 2: Solnechno–zemnaya fizika—sovremennoe sostoyanie i perspektivy (Solar–Terrestrial Physics: Current State and Prospects), Obridko, V.N., Ed., Moscow: Trovant, 2018, pp. 262–265. https://doi.org/10.31361/eaas.2018-2.066

  12. https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php

  13. https://earthquake.usgs.gov/earthquakes/browse/significant.php?year=2010

  14. https://modelweb.gsfc.nasa.gov/atmos/nrlmsise00.html

  15. Huang, C.-S., Foster, J.C., and Sahai, Y., Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause, J. Geophys. Res., 2007, vol. 112, A05315. https://doi.org/10.1029/2007JA012307

    Article  Google Scholar 

  16. Kim, V.P. and Hegai, V.V., On the electric fields produced by dipolar Coulomb charges of an individual thundercloud in the ionosphere, J. Astron. Space Sci., 2015, vol. 32, no. 2, pp. 141–144. https://doi.org/10.5140/JASS.2015.32.2.141

    Article  Google Scholar 

  17. Liu, J.-Y. and Chao, C.K., An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors, Terr. Atmos. Ocean Sci., 2017, vol. 28, no. 2, pp. 117–127. https://doi.org/10.3319/TAO.2016.07.18.01(EOF5)

    Article  Google Scholar 

  18. Park, C.G. and Dejnakarintra, M., Penetration of thundercloud electric fields into the ionosphere and magnetosphere: 1. Middle and subauroral latitudes, J. Geophys. Res., 1973, vol. 78, no. 28, pp. 6623–6633. https://doi.org/10.1029/JA078i028p06623

    Article  Google Scholar 

  19. Park, C.G. and Dejnakarintra, M., Thundercloud electric fields in the ionosphere, in Electrical Processes in Atmospheres, Dolezalek, H., Reiter, R., Landsberg, H.E., Eds., Darmstadt: Dr. Dietrich Steinkopff, 1976, pp. 544–551. https://doi.org/10.1007/978-3-642-85294-7_84

    Book  Google Scholar 

  20. Pulinets, S.A. and Boyarchuk, K.A., Ionospheric Precursors of Earthquakes, Berlin: Springer, 2004.

    Google Scholar 

  21. Rycroft, M.J., Odzimek, A., Arnold, N.F., Füllekrug, M., Kułak, A., and Neubert, T., New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, nos. 17–18, pp. 2485–2509. https://doi.org/10.1016/j.jastp.2007.09.004

    Article  Google Scholar 

  22. Schunk, R.W., A mathematical model of the middle and high latitude ionosphere, Pure Appl. Geophys., 1988, vol. 127, nos. 2–3, pp. 255–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Khegai.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khegai, V.V. Analytical Model of a Seismogenic Electric Field According to Data of Measurements in the Surface Layer of the Midlatitude Atmosphere and Calculation of Its Magnitude at the Ionospheric Level. Geomagn. Aeron. 60, 507–520 (2020). https://doi.org/10.1134/S0016793220030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220030081

Navigation