Skip to main content
Log in

Reconstruction of the Solar Activity in 1000–1700 Based on Auroral Data with Allowance for the Contribution of the Main Magnetic Field of the Earth

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A new reconstruction of the number of sunspots (SN) in 1000–1700, along with possible errors, has been obtained based on an analysis of auroral observations at middle and low latitudes and data on the Earth’s magnetic field at that time. The intensity and configuration of the main magnetic field of the Earth affect the penetration of the Earth’s magnetosphere and atmosphere by aurora-induced, charged, solar-wind particles. Our reconstruction differs from other authors in that we have taken into account this effect on the frequency of auroras. The time variation of the reconstructed SN shows the previously known minima of Oort, Wolf, Spörer, and Maunder. The SN values for 1100–1150 (medieval maximum) are comparable to those observed in the second half of the XX century during the current period of high solar activity. It is shown that SN decreases by approximately two times during the Maunder minimum in comparison with the previous period, but it can reach SN ≈ 40 in some years. Bifurcation and degeneration of the 11-year cycle occurs at the beginning of the Maunder minimum. It can be associated with the difference in solar dynamo modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Angot, A., The Aurora Borealis, New York: D. Appleton & Co, 1897.

    Google Scholar 

  2. Bacci, M.L., The Population of Europe: A History, Oxford: Blackwell, 1999; St. Petersburg: Aleksandriya, 2010.

  3. Beer, J., Tobias, S., and Weiss, N., An active Sun throughout the Maunder minimum, Sol. Phys., 1998, vol. 181, pp. 237–238.

    Article  Google Scholar 

  4. Clette, F., Svalgaard, L., Vaquero, J.M., and Cliver, E.W., Revisiting the sunspot number. A 400-year perspective on the solar cycle, Space Sci. Rev., 2014, vol. 186, nos. 1–4, pp. 35–103. https://doi.org/10.1007/s11214-014-0074-2

    Article  Google Scholar 

  5. Donadini, F., Korte, M., and Constable, C., Geomagnetic field for 0–3ka: 1. New data sets for global modeling, Geochem. Geophys. Geosyst., 2009, vol. 10, Q06007. https://doi.org/10.1029/2008GC002295

    Article  Google Scholar 

  6. Eddy, J.A., The Maunder minimum, Science, 1976, vol. 192, no. 4245, pp. 1189–1202.

    Article  Google Scholar 

  7. Eddy, J.A., The historical record of solar activity, in The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites: Proceedings of the Conference, Boulder, Colo., Oct. 16–19.1979, New York and Oxford: Pergamon, 1980, pp. 119–134.

  8. Feynman, J. and Gabriel, S.B., Period and phase of the 88-year solar cycle and the Maunder minimum: evidence for a chaotic sun, Sol. Phys., 1990, vol. 127, pp. 393–403.

    Article  Google Scholar 

  9. Feynman, J. and Ruzmaikin, A., The centennial Gleissberg cycle and its association with extended minima, J. Geophys Res.: Space Phys., 2014, vol. 119, no. 8, pp. 6027–6041. https://doi.org/10.1002/2013JA019478

    Article  Google Scholar 

  10. Halley, E., An account of the late surprising appearance of the lights seen in the air, on the sixth of March last; with an attempt to explain the principal phenomena thereof, Philos. Trans. R. Soc. London, 1716, vol. 29, pp. 406–428.

    Google Scholar 

  11. Hoyt, D.V. and Schatten, K.H., Group sunspot numbers: A new solar activity reconstruction. Part 1, Sol. Phys., 1998, vol. 179, pp. 189–219.

    Article  Google Scholar 

  12. Korte, M. and Constable, C.G., Continuous geomagnetic field models for the past 7 millennia: CALS7K, Geochem. Geophys. Geosyst., 2005, vol. 6. https://doi.org/10.1029/2004GC000801

  13. Korte, M. and Constable, C., Improving geomagnetic field reconstructions for 0–3 ka, Phys. Earth Planet. Int., 2011, vol. 188, pp. 247–259.

    Article  Google Scholar 

  14. Korte, M., Donadini, F., and Constable, C., Geomagnetic field for 0–3ka: 2. A new series of time-varying models, Geochem. Geophys. Geosyst., 2009, vol. 10, Q06008. https://doi.org/10.1029/2008GC002297

    Article  Google Scholar 

  15. Krivský, L., Long term fluctuations of solar activity during the last thousand year, Sol. Phys., 1984, vol. 93, pp. 189–194.

    Google Scholar 

  16. Krivský, L. and Pejml, K., Solar activity, aurorae and climate in Central Europe in the last 1000 years, Publ. Astron. Inst. Czech. Acad. Sci., 1985, vol. 33, no. 606, pp. 77–151.

    Google Scholar 

  17. Kuleshova, A.I., Dergachev, V., Kudryavtsev, I.V., Nagovitsyn, Yu.A., and Ogurtsov, M.G., Reconstruction of the Wolf numbers based on radiocarbon data from the early 11th century until the middle of the 19th century with respect to climate changes, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 8, pp. 1097–1102. https://doi.org/10.1134/S0016793218080108

  18. Letfus, V., Solar activity in the sixteenths and seventeenths centuries, Sol. Phys., 1993, vol. 145, no. 2, pp. 377–388.

    Article  Google Scholar 

  19. Letfus, V., Sunspot and auroral activity during Maunder minimum, Sol. Phys., 2000, vol. 197, pp. 203–213.https://doi.org/10.1023/A:1026577130556

    Article  Google Scholar 

  20. Liritzis, Y. and Petropoulos, B., Latitude dependence of auroral frequency in relation to solar–terrestrial and interplanetary parameters, Earth, Moon, Planets, 1987, vol. 39, no. 1, pp. 75–91.

    Article  Google Scholar 

  21. Loisha, V.A., Krakovetskii, Yu.K., and Popov, L.N., Polyarnye siyaniya. Katalog IV–XVIII vv. (Catalog of Polar Auroras for IV–XVIII Centuries), Moscow: Mezhvedomstvennyi geofizicheskii komitet AN SSSR, 1989.

  22. Loomis, E., The aurora borealis or polar light; its phenomena and laws, Ann. Rep. Smithson. Inst., 1866, no. 13.

  23. Lovering, J., On the periodicity of the aurora borealis, Mem. Am. Acad. Arts Sci., 1868, vol. 10, pp. 9–351.

    Google Scholar 

  24. Mairan, J.J., Traité physique et historique de l’aurore boréale. Suite des Mémoires de l’Académie Royale des Science, Paris: l’Impremerie Royale, 1733.

  25. Miyahara, H., Sokoloff, D.D., and Usoskin, I.G., The solar cycle at the Maunder minimum epoch, in Advances in Geosciences, vol. 2: Solar Terrestrial (ST), Ip, W.H. and Duldig, M., Eds., Singapore: World Scientific, 2006, pp. 1–20. https://doi.org/10.1142/9789812707185_0001

  26. Muscheler, R., Joos, F., Müller, S.A., and Snowball, I., How unusual is today’s solar activity?, Nature, 2005, vol. 436, pp. E4–E5.

    Article  Google Scholar 

  27. Nagovitsyn, Yu.A., A nonlinear mathematical model for the solar cyclicity and prospects for reconstructing the solar activity in the past, Astron. Lett., 1997, vol. 23, no. 6, pp. 742–748.

    Google Scholar 

  28. Nagovitsyn, Yu.A., Solar cycles during the Maunder minimum, Astron. Lett., 2007, vol. 33, no. 5, pp. 340-345.

    Article  Google Scholar 

  29. Nagovitsyn, Yu.A., Global solar activity on long time scales, Astrophys. Bull., 2008, vol. 63, no. 1, pp. 43–55.

    Google Scholar 

  30. Nagovitsyn, Yu.A., Georgieva, K., Osipova, A.A., and Kuleshova, A.I., Eleven-year cyclicity of the Sun on the 2000-year time scale, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 8, pp. 1081–1088. https://doi.org/10.1134/S001679321508023X

  31. Ogurtsov, M.G., Nagovitsyn, Yu.A., Kocharov, G.E., and Jungner, H., Long-period cycles of the Sun’s activity recorded in direct solar data and proxies, Sol. Phys., 2002, vol. 211, pp. 371–394.

    Article  Google Scholar 

  32. Ogurtsov, M.G., Kocharov, G.E., and Nagovitsyn, Yu.A., Solar cyclicity during the Maunder minimum, Astron. Rep., 2003, vol. 47, no. 6, pp. 517–524. https://doi.org/10.1134/1.1583779

    Article  Google Scholar 

  33. Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., Variations in the occurrence frequency of Aurora in 1837–1900 from data of the Russian network of meteorological observatories, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 5, pp. 679–687.

  34. Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., 22-year cycle in the frequency of aurora occurrence in XIX century: Latitudinal effects, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 2, pp. 190–198.

  35. Ptitsyna, N.G., Demina, I.M., and Tyasto, M.I., Variations in the auroral activity and main magnetic field of the Earth over 300 years (1600–1909), Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 6, pp. 784–792.

  36. Samarkin, V.V., Istoricheskaya geografiya Zapadnoi Evropy v srednie veka (Historical Geography of Medieval Western Europe), Moscow: Vysshaya shkola, 1976.

  37. Schove, D.J., Aurora numbers since 500 B.C., J.Br. Astron. Assoc., 1962, vol. 72, no. 1, pp. 31–35.

    Google Scholar 

  38. Simon, P.A. and Legrand, J.P., Solar cycle and geomagnetic activity: A review for geophysicists. Part II. The solar sources of geomagnetic activity and their links with sunspot cycle activity, Ann. Geophys., 1989, vol. 7, pp. 579–594.

    Google Scholar 

  39. Siscoe, G.L., Evidence in the auroral record for secular solar variability, Rev. Geophys., 1980, vol. 1, no. 8, pp. 647–658.

    Article  Google Scholar 

  40. Sokoloff, D., The Maunder minimum and the solar dynamo, Sol. Phys., 2004, vol. 224, pp. 145–152.

    Article  Google Scholar 

  41. Solanki, S., Usoskin, I.G., Kromer, B., Schüssler, M., and Beer, J., Unusual activity of the Sun during recent decades compared to the previous 11,000 years, Nature, 2004, vol. 431, pp. 1084–1087.

    Article  Google Scholar 

  42. Steinhilber, F., Abreu, J.A., Beer, J., et al., 9400 year cosmogenic isotope data and solar activity reconstruction, IGBP PAGES/WDC Paleoclimate Data Contr. Ser. 2012-040, NOAA/NCDC Paleoclimate Program, Boulder, Colo., 2012. https://doi.org/10.1073/pnas.1118965109

    Book  Google Scholar 

  43. Svalgaard, L. and Schatten, K.H., Reconstruction of the sunspot group number: The backbone method, Sol. Phys., 2016, vol. 291, pp. 2653–2684. https://doi.org/10.1007/s11207-015-0815-8

    Article  Google Scholar 

  44. Svyatskii, D.O., Astronomiya Drevnei Rusi (Astronomy of Ancient Russia), Moscow: Russkaya panorama, 2007.

  45. Usoskin, I.G., A history of solar activity over millennia, Living Rev. Sol. Phys., 2017, vol. 14, id 3. https://doi.org/10.1007/s41116-017-0006-9

  46. Usoskin, I.G., Mursula, K., and Kovaltsov, G.A., Sunspot activity during the maunder minimum, Astron. Astrophys., 2000, vol. 354, id L33.

  47. Usoskin, I.G., Solanki, S.K., Schüssler, M., Mursula, K., and Alanko, K., Millennium-scale sunspot number reconstruction: Evidence for an unusually active Sun since the 1940s, Phys. Rev. Lett., 2003, vol. 91, id 211101. https://doi.org/10.1103/PhysRevLett.91.211101

  48. Usoskin, I.G., Gallet, Y., Kovaltsov, G.A., and Hulot, G., Solar activity during the Holocene: The Hallstatt cycle and its consequence for grand minima and maxima, Astron. Astrophys., 2016, vol. 587, id A150. https://doi.org/10.1051/0004-6361/201527295

  49. Val’chuk, T.E., Livshits, M.A., and Fel’dshtein, Ya.I., Sounding of high-latitude solar magnetic fields with the geomagnetic field, Pis’ma Astron. Zh., 1978, vol. 4, pp. 515–519.

    Google Scholar 

  50. Vaquero, J.M., Kovaltsov, G.A., Usoskin, I.G., Carrasco, V.M.S., and Gallego, M.C., Level and length of cyclic solar activity during the Maunder minimum as deduced from the active day statistics, Astron. Astrophys., 2015, vol. 577, pp. 1–6.

    Article  Google Scholar 

  51. Vasquez, M., Vaquero, J.M., and Gallego, M.C., Long-term spatial and temporal variations of aurora borealis events in the period 1700–1905, Sol. Phys., 2014, vol. 289, no. 5, pp. 1843–1861.

    Article  Google Scholar 

  52. Vitinskii, Yu.I., Statistika pyatnoobrazovatel’noi deyatel’nosti Solntsa (Statistics of Sunspot Formation Activity), Moscow: Nauka-Fizmatlit, 1986.

  53. Webb, D.F., Crooker, N.U., Plunkett, S.P., and St. Cyr, O.C., The solar sources of geoeffective structures, in Space Weather: Progress and Challenges in Research and Applications, Song, P., Siscoe, G., and Singer, H.J., Eds., Washington, DC: AGU, 2001.

    Google Scholar 

  54. Wu, C.J., Usoskin, I.G., Krivova, N., Kovaltsov, G.A., Baroni, M., Bard, E., and Solanki, S.K., Solar activity over nine millennia: A consistent multi-proxy reconstruction, Astron. Astrophys., 2018, vol. 615, pp. 1–13.

    Article  Google Scholar 

  55. Yau, K.K.C. and Stephenson, F.R., A revised catalogue of Far Eastern observations of sunspots (165 BC to AD 1918), Q. J. R. Astron. Soc., 1988, vol. 29, pp. 175–197.

    Google Scholar 

  56. Zolotova, N.V. and Ponyavin, D.I., The Maunder minimum is not as grand as it seemed to be, Astrophys. J., 2015, vol. 800, no. 42, pp. 1–14. https://doi.org/10.1088/0004-637X/800/1/42

    Article  Google Scholar 

  57. Zolotova, N.V. and Ponyavin, D.I., How deep was the Maunder minimum?, Sol. Phys., 2016, vol. 291, nos. 9–10, pp. 2869–2890.https://doi.org/10.1007/s11207-016-0908-z

    Article  Google Scholar 

  58. Zolotova, N.V., Sizonenko, Yu.V., Vokhmyanin, M.V., and Veselovskii, I.S., An attempt to retrieve indirect data on solar wind from observations of comet trails in the Maunder minimum, in Tr. XXI Vserossiiskoi ezhegodnoi konf. “Solnechnaya i solnechno–zemnaya fizika-2017” (Proceedings of the 21st All-Russian Annual Conference “Solar and Solar–Terrestrial Physics-2017”), St-Petersburg: GAO RAN, 2017, pp. 157–160.

Download references

ACKNOWLEDGMENTS

We thank G.A. Koval’tsov for the data on MM behavior in the GMAG.9k model and an anonymous reviewer for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Ptitsyna or I. M. Demina.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptitsyna, N.G., Demina, I.M. Reconstruction of the Solar Activity in 1000–1700 Based on Auroral Data with Allowance for the Contribution of the Main Magnetic Field of the Earth. Geomagn. Aeron. 60, 495–506 (2020). https://doi.org/10.1134/S0016793220030159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220030159

Navigation