Skip to main content
Log in

Spectral analysis of GFDM modulated signal under nonlinear behavior of power amplifier

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Generalized frequency division multiplexing (GFDM) is a flexible non-orthogonal waveform candidate for 5G which can offer some advantages such as low out-of-band emission and high spectral efficiency. This paper investigates the effects of nonlinear behavior of practical power amplifier (PA) on the GFDM spectrum. A closed form expression for power spectral density (PSD) of GFDM signal is extracted. Then, PSD at the output of PA as a function of input power and the coefficients of nonlinear polynomial PA model is derived. In addition, the adjacent channel power (ACP) and ACP ratio, as two important performance metrics, are evaluated. The simulation results confirm the accuracy of derived analytical expressions. Moreover, to validate the performance of GFDM modulation after nonlinear PA, it is compared with orthogonal frequency division multiplexing modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  2. Peng, S., Liu, A., Song, L., Memon, I., & Wang, H. (2018). Spectral efficiency maximization for deliberate clipping-based multicarrier faster-than-nyquist signaling. IEEE Access, 6, 13617–13623.

    Article  Google Scholar 

  3. Abdo, A. M. A., Zhao, X., Zhang, R., Zhou, Z., Zhang, J., Zhang, Y., et al. (2018) MU-MIMO downlink capacity analysis and optimum code weight vector design for 5G big data massive antenna millimeter wave communication. Wireless Communications and Mobile Computing, 2018, 1–12.

    Article  Google Scholar 

  4. Zhao, X., Abdo, A. M. A., Xu, C., Geng, S., Zhang, J., & Memon, I. (2018). Dimension reduction of channel correlation matrix using CUR-decomposition technique for 3-D massive antenna system. IEEE Access, 6, 3031–3039.

    Article  Google Scholar 

  5. Wunder, G., et al. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105.

    Article  Google Scholar 

  6. Kim, H., Kim, J., Yang, S., Hong, M., & Shin, Y. (2008). An effective MIMO–OFDM system for IEEE 802.22 WRAN channels. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(8), 821–825.

    Article  Google Scholar 

  7. Van De Beek, J., & Berggren, F. (2008). Out-of-band power suppression in OFDM. IEEE Communications Letters, 12(9), 609–611.

    Article  Google Scholar 

  8. Farhang-Boroujeny, B. (2011). OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine, 28(3), 92–112.

    Article  Google Scholar 

  9. Michailow, N., et al. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3061.

    Article  Google Scholar 

  10. Mohammadian, A., Baghani, M., & Tellambura, C. (2018). Analysis and rate optimization of GFDM-based cognitive radios. Transactions on Emerging Telecommunications Technologies, 29(9), e435.

    Article  Google Scholar 

  11. Ihalainen, T., Ikhlef, A., Louveaux, J., & Renfors, M. (2011). Channel equalization for multi-antenna FBMC/OQAM receivers. IEEE Transactions on Vehicular Technology, 60(5), 2070–2085.

    Article  Google Scholar 

  12. Fettweis, G., Krondorf, M., & Bittner, S. (2009). GFDM-Generalized Frequency Division Multiplexing. In Proceedings of 69th IEEE VTC Spring, Barcelona, Spain, pp. 1–4.

  13. Matthé, M., Michailow, N., Gaspar, I., & Fettweis, G. (2014). Influence of pulse shaping on bit error rate performance and out of band radiation of generalized frequency division multiplexing. In IEEE International Conference on Communications Workshops (ICC), pp. 43–48.

  14. Farhang, A., Marchetti, N., & Doyle, L. E. (2016). Low-complexity modem design for GFDM. IEEE Transactions on Signal Processing, 64(6), 1507–1518.

    Article  MathSciNet  Google Scholar 

  15. Lavrador, P. M., Cunha, T. R., Cabral, P. M., & Pedro, J. C. (2010). The linearity-efficiency compromise. IEEE Microwave Magazine, 11(5), 44–58.

    Article  Google Scholar 

  16. Mohammadi, A., & Ghannouchi, F. M. (2012). RF transceiver design for MIMO wireless communications (Vol. 145). Berlin: Springer.

    Book  Google Scholar 

  17. Sendrei, L., & Marchevský, S. (2015). Nonlinear noise estimation and compensation in GFDM based communication systems for cognitive radio networks. In 2015 25th International Conference Radioelektronika, pp. 313–316.

  18. Rahmati, M. M., Abdipour, A., Mohammadi, A., & Moradi, G. (2011). An analytic approach for CDMA output of feedforward power amplifier. Analog Integrated Circuits and Signal Processing, 66(3), 349–361.

    Article  Google Scholar 

  19. Costa, E., & Pupolin, S. (2002). M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications, 50(3), 462–472.

    Article  Google Scholar 

  20. Madani, M. H., Abdipour, A., & Mohammadi, A. (2010). Analysis of performance degradation due to non-linearity and phase noise in orthogonal frequency division multiplexing systems. IET Communications, 4(10), 1226–1237.

    Article  MathSciNet  Google Scholar 

  21. Zhou, G. T., & Kenney, J. S. (2002). Predicting spectral regrowth of nonlinear power amplifiers. IEEE Transactions on Communications, 50(5), 718–722.

    Article  Google Scholar 

  22. Majidi, M., Mohammadi, A., & Abdipour, A. (2013). Accurate analysis of spectral regrowth of nonlinear power amplifier driven by cyclostationary modulated signals. Analog Integrated Circuits and Signal Processing, 74(2), 425–437.

    Article  Google Scholar 

  23. Cottais, E., Wang, Y., & Toutain, S. (2008). Spectral regrowth analysis at the output of a memoryless power amplifier with multicarrier signals. IEEE Transactions on Communications, 56(7), 1111–1118.

    Article  Google Scholar 

  24. Majidi, M., Mohammadi, A., & Abdipour, A. (2014). Analysis of the power amplifier nonlinearity on the power allocation in cognitive radio networks. IEEE Transactions on Communications, 62(2), 467–477.

    Article  Google Scholar 

  25. Baghani, M., Mohammadi, A., Majidi, M., & Valkama, M. (2014). Analysis and rate optimization of ofdm-based cognitive radio networks under power amplifier nonlinearity. IEEE Transactions on Communications, 62(10), 3410–3419.

    Article  Google Scholar 

  26. Mohammadian, A., Baghani, M., & Tellambura, C. (2019). Optimal power allocation of GFDM secondary links with power amplifier nonlinearity and ACI. IEEE Wireless Communications Letters, 8(1), 93–96.

    Article  Google Scholar 

  27. Mohammadian, A., & Tellambura, A. (2019). Full-duplex GFDM radio transceivers in the presence of phase noise, CFO and IQ imbalance. In Accepted by 2019 IEEE International Conference on Communications.

  28. Schreurs, D., Odroma, M., Goacher, A. A., & Gadringer, M. (2009). RF power amplifier behavioral modeling. New York: Cambridge University Press.

    Google Scholar 

  29. Gard, K. G., Gutierrez, H. M., & Steer, M. B. (1999). Characterization of spectral regrowth in microwave amplifiers based on the nonlinear transformation of a complex new Gaussian process. IEEE Transactions on Microwave Theory and Techniques, 47(7), 1059–1069.

    Article  Google Scholar 

  30. Staudinger, J. (1997). Applying the quadrature modeling technique to wireless power amplifiers. Microwave Journal, 40(11), 66–78.

    Google Scholar 

  31. Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.

    Google Scholar 

  32. Raich, R. (2004). Nonlinear system identification and analysis with applications to power amplifier modeling and power amplifier predistortion. Ph.D. thesis, School of Elect. Comput. Eng., Georgia Inst. Technol., Atlanta.

  33. Kay, S. M. (1988). Modern spectral estimation: Theory and application. In Signal Processing Series.

  34. Reed, I. S. (1962). On a moment theorem for complex Gaussian processes. IEEE Transactions on Information Theory, 3(8), 194–195.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Mohammadian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Moments of complex Gaussian random variable l are given by [34]

$$\begin{aligned} \begin{aligned}&E[{{l}_{1}}{{l}_{2}}\ldots ,{{l}_{s}}l_{1}^{*}l_{2}^{*}\ldots ,l_{m}^{*}] \\&=\left\{ \begin{aligned}&0,s\ne m \\&\sum \limits _{\pi }{E[{{l}_{\pi (1)}}l_{1}^{*}]E[{{l}_{\pi (2)}}l_{2}^{*}],\ldots ,E[{{l}_{\pi (s)}}l_{m}^{*}]},s=m \\ \end{aligned} \right. \\ \end{aligned} \end{aligned}$$
(27)

where \(\left\{ {{l}_{i}}, i=1,2,\ldots s,\ldots ,m \right\}\) are complex Gaussian random variables and \(\pi\) is apermutation of the set of integers \(\left\{ 1,2,\ldots ,s,\ldots ,m \right\}\) [29]. Due to Gaussian distribution of y(t), (27) is used to calculate \({{\phi }_{{{i}_{1}},{{i}_{2}}}}(t,\tau )=E[y{{(t)}^{{{i}_{1}}+1}}y{{(t-\tau )}^{{{i}_{2}}}}{{({{y}^{*}}(t))}^{{{i}_{1}}}}{{({{y}^{*}}(t-\tau ))}^{{{i}_{2}}+1}}]\) as

$$\begin{aligned} {{\phi }_{{{i}_{1}},{{i}_{2}}}}(t,\tau )=\sum \limits _{\pi }{E[{{y}_{\pi (1)}}{{y}^{*}}(t)],\ldots ,E[{{y}_{\pi ({{i}_{1}})}}{{y}^{*}}(t)]}E[{{y}_{\pi ({{i}_{1}}+1)}}{{y}^{*}}(t-\tau )],\ldots ,E[{{y}_{\pi ({{i}_{1}}+{{i}_{2}}+1)}}{{y}^{*}}(t-\tau )] \end{aligned}$$
(28)

where \(s=m={{i}_{1}}+{{i}_{2}}+1\) and \({{y}_{i}}=\left\{ \begin{aligned}&y(t)\quad \quad \quad i=1,\ldots ,{{i}_{1}}+1 \\&y(t-\tau )\quad i={{i}_{1}}+2,\ldots ,{{i}_{1}}+{{i}_{2}}+1 \\ \end{aligned} \right.\)

By doing some manual calculation on (28), \({{\phi }_{{{i}_{1}},{{i}_{2}}}}(t,\tau )\) is derived as

$$\begin{aligned} \begin{aligned} {{\phi }_{{{i}_{1}},{{i}_{2}}}}(t,\tau )=&\sum \limits _{p=0}^{\min ({{i}_{1}},{{i}_{2}})}{\left( \begin{aligned}&{{i}_{2}}+1 \\&p+1 \\ \end{aligned} \right) \left( \begin{aligned}&{{i}_{1}}+1 \\&p+1 \\ \end{aligned} \right) \left( \begin{aligned}&{{i}_{2}} \\&p \\ \end{aligned} \right) \left( \begin{aligned}&{{i}_{1}} \\&p \\ \end{aligned} \right) (p+1)!(p)!({{i}_{2}}-p)!({{i}_{1}}-p)!} \\&{{({{R}_{yy}}(t,\tau ))}^{p+1}}{{({{R}_{yy}}^{*}(t,\tau ))}^{p}} {{({{R}_{yy}}(t,0))}^{{{i}_{1}}+{{i}_{2}}-2p}} \\ \end{aligned} \end{aligned}$$
(29)

Appendix 2

By considering (8), (15) and (16), \({{\phi }_{{{i}_{1}},{{i}_{2}}}}(\tau )\) is derived. In the following, by taking FT of it, \({{\phi }_{{{i}_{1}},{{i}_{2}}}}(f)=\int \limits _{-\infty }^{\infty }{{{\phi }_{{{i}_{1}},{{i}_{2}}}}(\tau ){{e}^{-j2\pi f\tau }}}d\tau\) is calculated as

$$\begin{aligned} \begin{aligned}&{{\phi }_{{{i}_{1}},{{i}_{2}}}}(f)=\sum \limits _{p=0}^{\min ({{i}_{1}}, {{i}_{2}})}{{{T}_{{{i}_{1}},{{i}_{2}}}}} \\&\times \left( \begin{aligned}&\sum \limits _{\upsilon =-\infty }^{\infty } {\sum \limits _{{{m}_{1}},\ldots ,{{m}_{p+1}}=0}^{M-1} \quad {\sum \limits _{m_{1}^{\prime },\ldots ,m_{p}^{\prime }=0}^{M-1}\quad {\sum \limits _{m_{1}^{\prime \prime }, \ldots ,m_{{{i}_{1}}+{{i}_{2}}-2p}^{\prime \prime }=0}^{M-1}{{}}}}} \\&\left( \int \limits _{0}^{M{{T}_{s}}}{\sum \limits _{\upsilon =-\infty }^{\infty }{(\prod \limits _{j=1}^{p+1}{{{g}_{{{m}_{j}}}}(t-\upsilon {{T}_{B}})}\prod \limits _{{{j}^{\prime }}=1}^{p}{g_{m_{{{j}^{\prime }}}^{\prime }}^{*}(t-\upsilon {{T}_{B}})}{{\prod \limits _{{{j}^{\prime \prime }}=1}^{{{i}_{1}}+{{i}_{2}}-2p}{\left| {{g}_{m_{{{j}^{\prime \prime }}}^{\prime \prime }}}(t-\upsilon {{T}_{B}}) \right| }}^{2}})}}dt \right) \\&\times \left( \int \limits _{-\infty }^{\infty } {\prod \limits _{j=1}^{p+1}{g_{{{m}_{j}}}^{*}(t-\tau -\upsilon {{T}_{B}})} \prod \limits _{{{j}^{\prime }}=1}^{p}{{{g}_{m_{{{j}^{\prime }}}^{\prime }}}(t-\tau -\upsilon {{T}_{B}})}{{e}^{-j2\pi f\tau }}}d\tau \right) \\ \end{aligned} \right) \\&\otimes \left( (\sum \limits _{{{k}_{1}},\ldots ,{{k}_{p+1}}=0}^{K-1} \quad {\sum \limits _{k_{1}^{\prime },\ldots ,k_{p}^{\prime }=0}^{K-1}{\delta (f-\dfrac{(\sum \limits _{j=1}^{p+1}{{{k}_{j}}}- \sum \limits _{{{j}^{\prime }}=1}^{p}{{{k}_{{{j}^{\prime }}}}-\dfrac{K-1}{2}})}{{{T}_{s}}})}} \right) \\ \end{aligned} \end{aligned}$$
(30)

where

$$\begin{aligned} {{T }_{{{i}_{1}},{{i}_{2}}}}=\left( \begin{aligned}&{{i}_{2}}+1 \\&p+1 \\ \end{aligned} \right) \left( \begin{aligned}&{{i}_{1}}+1 \\&p+1 \\ \end{aligned} \right) \left( \begin{aligned}&{{i}_{2}} \\&p \\ \end{aligned} \right) \left( \begin{aligned}&{{i}_{1}} \\&p \\ \end{aligned} \right) (p+1)!(p)!({{i}_{2}}-p) !({{i}_{1}}-p)!{{(\alpha {{\overline{p}}_{x}})}^{{{i}_{1}}+{{i}_{2}}+1}}{{(K)}^{{{i}_{1}} +{{i}_{2}}-2p}}\frac{1}{M{{T}_{s}}}. \end{aligned}$$
(31)

By defining \({{\tau }^{\prime }}=t-\tau -\upsilon {{T}_{B}}\) and using linear convolution formula, (30) can be expressed as

$$\begin{aligned} \begin{aligned}&{{\phi }_{{{i}_{1}},{{i}_{2}}}}(f)= \sum \limits _{p=0}^{\min ({{i}_{1}},{{i}_{2}})}{{{T}_{{{i}_{1}},{{i}_{2}}}}} \\&\times \left[ \begin{aligned}&\sum \limits _{{{m}_{1}},\ldots ,{{m}_{p+1}}=0}^{M-1}\quad {\sum \limits _{m_{1}^{\prime },\ldots ,m_{p}^{\prime }=0}^{M-1}\quad {\sum \limits _{m_{1}^{\prime \prime },\ldots ,m_{{{i}_{1}}+{{i}_{2}}-2p}^{\prime \prime }=0}^{M-1}{B(f)}}} \\&\times \left( G_{_{{{m}_{1}}}}^{*}(f)\otimes \ldots \otimes G_{{{m}_{p+1}}}^{*}(f)\otimes {{G}_{m_{1}^{\prime }}}(-f)\otimes \ldots \otimes {{G}_{m_{p}^{\prime }}}(-f) \right) \\ \end{aligned} \right] \\&\otimes \left( (\sum \limits _{{{k}_{1}},\ldots ,{{k}_{p+1}}=0}^{K-1}\quad {\sum \limits _{k_{1}^{\prime },\ldots ,k_{p}^{\prime }=0}^{K-1}{\delta \left(f-\dfrac{\left(\sum \limits _{j=1}^{p+1}{{{k}_{j}}}-\sum \limits _{{{j}^{\prime }}=1}^{p}{{{k}_{{{j}^{\prime }}}}-\dfrac{K-1}{2}}\right)}{{{T}_{s}}}\right)}} \right) \\ \end{aligned} \end{aligned}$$
(32)

where B(f) is equal to

$$\begin{aligned} \begin{aligned} B(f)=&\int \limits _{0}^{M{{T}_{s}}}{\sum \limits _{\upsilon =-\infty }^{\infty }{(\prod \limits _{j=1}^{p+1}{{{g}_{{{m}_{j}}}}(t-\upsilon {{T}_{B}})}\prod \limits _{{{j}^{\prime }}=1}^{p}{g_{m_{{{j}^{\prime }}}^{\prime }}^{*}(t-\upsilon {{T}_{B}})}{{\prod \limits _{{{j}^{\prime \prime }}=1}^{{{i}_{1}}+{{i}_{2}}-2p}{\left| {{g}_{m_{{{j}^{\prime \prime }}}^{\prime \prime }}}(t-\upsilon {{T}_{B}}) \right| }}^{2}}{{e}^{-j2\pi f(t-\upsilon {{T}_{B}})}})}}dt \\&=\int \limits _{-\infty }^{\infty }{(\prod \limits _{j=1}^{p+1}{{{g}_{{{m}_{j}}}}(t)}\prod \limits _{{{j}^{\prime }}=1}^{p}{g_{m_{{{j}^{\prime }}}^{\prime }}^{*}(t)}{{\prod \limits _{{{j}^{\prime \prime }}=1}^{{{i}_{1}}+{{i}_{2}}-2p}{\left| {{g}_{m_{{{j}^{\prime \prime }}}^{\prime \prime }}}(t) \right| }}^{2}}{{e}^{-j2\pi f(t)}})}dt \\&=\left( \begin{aligned}&{{G}_{{{m}_{1}}}}(f)\otimes \ldots \otimes {{G}_{{{m}_{p+1}}}}(f)\otimes G_{m_{1}^{\prime }}^{*}(-f)\otimes \ldots \otimes G_{m_{p}^{\prime }}^{*}(-f)\otimes \\&G_{m_{1}^{\prime \prime }}^{*}(-f)\otimes \ldots \otimes G_{m_{{{i}_{1}}+{{i}_{2}}-2p}^{\prime \prime }}^{*}(-f)\otimes {{G}_{m_{1}^{\prime \prime }}}(f)\otimes \ldots \otimes {{G}_{m_{{{i}_{1}}+{{i}_{2}}-2p}^{\prime \prime }}}(f) \\ \end{aligned} \right) . \\ \end{aligned} \end{aligned}$$
(33)

By considering (32) and (33), \({{\phi }_{{{i}_{1}},{{i}_{2}}}}(f)\) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadian, A., Mohammadi, A., Abdipour, A. et al. Spectral analysis of GFDM modulated signal under nonlinear behavior of power amplifier. Wireless Netw 27, 137–149 (2021). https://doi.org/10.1007/s11276-020-02403-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02403-2

Keywords

Navigation