Skip to main content

Advertisement

Log in

Deletion of the adenosine A2A receptor increases the survival rate in a mice model of polymicrobial sepsis

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

We aim to investigate the role of A2A receptor in peritonitis-related sepsis by injection of a fecal solution (FS) as a model of polymicrobial infection. C57/black J6 wild-type (WT) and A2A-deficient mice (A2AKO) were exposed to sepsis induced by intraperitoneal injection of a FS (FS-induced peritonitis) or instead was injected with saline buffer (Sham). Survival rate and sepsis score were measured up to 48 h. The presence of bacteria in tissue homogenates was analyzed. Telemetry and speckle laser Doppler were used for systemic blood pressure and peripheral blood perfusion analysis, respectively. Histological analysis and identification of active caspase 3 were performed in selected organs, including the liver. The survival rate of A2AKO mice exposed to FS-induced peritonitis was significantly higher, and the sepsis score was lower than their respective WT counterpart. Injection of FS increases (50 to 150 folds) the number of colonies forming units in the liver, kidney, blood, and lung in WT mice, while these effects were significantly attenuated in A2AKO mice exposed to FS-induced peritonitis. A significant reduction in both systolic and diastolic blood pressure, as well as in the peripheral perfusion was observed in WT and A2AKO mice exposed to FS-induced peritonitis. Although, these last effects were significantly attenuated in A2AKO mice. Histological analysis showed a large perivascular infiltration of polymorphonuclear in the liver of WT and A2AKO mice exposed to FS-induced peritonitis, but again, this effect was attenuated in A2AKO mice. Finally, high expression of active caspase 3 was found only in the liver of WT mice exposed to FS-induced peritonitis. The absence of the A2A receptor increases the survival rate in mice exposed to polymicrobial sepsis. This outcome was associated with both hemodynamic compensation and enhanced anti-bacterial response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data is available upon author request.

Abbreviations

A2A :

A2A adenosine receptor

ADO:

Adenosine

eNOS:

Endothelial nitric oxide synthase

IL:

Interleukins

iNOS:

Nitric oxide inducible synthase

NF- κB:

Nuclear factor κB

NO:

Nitric oxide

TNFα:

Tumor necrosis factor α

VEGF:

Endothelial growth factor

References

  1. Laszlo I, Trasy D, Molnar Z, Fazakas J (2015) Sepsis: from pathophysiology to individualized patient care. J Immunol Res 2015:510436–510413. https://doi.org/10.1155/2015/510436

    Article  PubMed  PubMed Central  Google Scholar 

  2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama. 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mayr FB, Yende S, Angus DC (2014) Epidemiology of severe sepsis. Virulence. 5(1):4–11. https://doi.org/10.4161/viru.27372

    Article  PubMed  Google Scholar 

  4. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29(7):1303–1310

    Article  CAS  Google Scholar 

  5. Ma L, Zhang H, Yin YL, Guo WZ, Ma YQ, Wang YB, Shu C, Dong LQ (2016) Role of interleukin-6 to differentiate sepsis from non-infectious systemic inflammatory response syndrome. Cytokine. 88:126–135. https://doi.org/10.1016/j.cyto.2016.08.033

    Article  CAS  PubMed  Google Scholar 

  6. Steinhauser ML, Hogaboam CM, Kunkel SL, Lukacs NW, Strieter RM, Standiford TJ (1999) IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol 162(1):392–399

    CAS  PubMed  Google Scholar 

  7. Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13(3):260–268. https://doi.org/10.1016/s1473-3099(13)70001-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Savio LEB, de Andrade MP, Figliuolo VR, de Avelar Almeida TF, Santana PT, Oliveira SDS et al (2017) CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury. J Hepatol 67(4):716–726. https://doi.org/10.1016/j.jhep.2017.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsuda N, Hattori Y (2007) Vascular biology in sepsis: pathophysiological and therapeutic significance of vascular dysfunction. J Smooth Muscle Res 43(4):117–137. https://doi.org/10.1540/jsmr.43.117

    Article  PubMed  Google Scholar 

  10. Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33(4):780–786

    Article  CAS  Google Scholar 

  11. LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28(8):2729–2732

    Article  CAS  Google Scholar 

  12. Antonioli L, Fornai M, Blandizzi C, Pacher P, Hasko G (2019) Adenosine signaling and the immune system: when a lot could be too much. Immunol Lett 205:9–15. https://doi.org/10.1016/j.imlet.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  13. Martin C, Leone M, Viviand X, Ayem ML, Guieu R (2000) High adenosine plasma concentration as a prognostic index for outcome in patients with septic shock. Crit Care Med 28(9):3198–3202

    Article  CAS  Google Scholar 

  14. Tawfik HE, Schnermann J, Oldenburg PJ, Mustafa SJ (2005) Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol 288(3):H1411–H1416. https://doi.org/10.1152/ajpheart.00684.2004

    Article  CAS  PubMed  Google Scholar 

  15. Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Voyno-Yasenetskaya T, Biaggioni I (2002) Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res 90(5):531–538

    Article  CAS  Google Scholar 

  16. Hasko G, Szabo C, Nemeth ZH, Kvetan V, Pastores SM, Vizi ES (1996) Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J Immunol (Baltimore, Md : 1950) 157(10):4634–4640

    CAS  Google Scholar 

  17. Koshiba M, Rosin DL, Hayashi N, Linden J, Sitkovsky MV (1999) Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Mol Pharmacol 55(3):614–624

    CAS  PubMed  Google Scholar 

  18. Moore CC, Martin EN, Lee GH, Obrig T, Linden J, Scheld WM (2008) An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models. BMC Infect Dis 8:141. https://doi.org/10.1186/1471-2334-8-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sivak KV, Vasin AV, Egorov VV, Tsevtkov VB, Kuzmich NN, Savina VA et al (2016) Adenosine A2A receptor as a drug target for treatment of sepsis. Mol Biol 50(2):231–245. https://doi.org/10.7868/s0026898416020233

    Article  CAS  Google Scholar 

  20. Sullivan GW, Fang G, Linden J, Scheld WM (2004) A2A adenosine receptor activation improves survival in mouse models of endotoxemia and sepsis. J Infect Dis 189(10):1897–1904. https://doi.org/10.1086/386311

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Figler RA, Kolling G, Bracken TC, Rieger J, Stevenson RW, Linden J, Guerrant RL, Warren CA (2012) Adenosine A2A receptor activation reduces recurrence and mortality from Clostridium difficile infection in mice following vancomycin treatment. BMC Infect Dis 12:342. https://doi.org/10.1186/1471-2334-12-342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Németh ZH, Csóka B, Wilmanski J, Xu D, Lu Q, Ledent C et al (2006) Adenosine A(2A) receptor inactivation increases survival in polymicrobial sepsis. J Immunol (Baltimore, Md : 1950) 176(9):5616–5626

    Article  Google Scholar 

  23. Belikoff BG, Hatfield S, Georgiev P, Ohta A, Lukashev D, Buras JA, Remick DG, Sitkovsky M (2011) A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. J Immunol 186(4):2444–2453. https://doi.org/10.4049/jimmunol.1001567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alam MS, Kurtz CC, Wilson JM, Burnette BR, Wiznerowicz EB, Ross WG, Rieger JM, Figler RA, Linden J, Crowe SE, Ernst PB (2009) A2A adenosine receptor (AR) activation inhibits pro-inflammatory cytokine production by human CD4+ helper T cells and regulates Helicobacter-induced gastritis and bacterial persistence. Mucosal Immunol 2(3):232–242. https://doi.org/10.1038/mi.2009.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang S, Chung CS, Ayala A, Chaudry IH, Wang P (2002) Differential alterations in cardiovascular responses during the progression of polymicrobial sepsis in the mouse. Shock. 17(1):55–60. https://doi.org/10.1097/00024382-200201000-00010

    Article  CAS  PubMed  Google Scholar 

  26. Ponnoth DS, Sanjani MS, Ledent C, Roush K, Krahn T, Mustafa SJ (2009) Absence of adenosine-mediated aortic relaxation in A(2A) adenosine receptor knockout mice. Am J Physiol Heart Circ Physiol 297(5):H1655–H1660. https://doi.org/10.1152/ajpheart.00192.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Fenton RA, Wheeler HB, Powell CC, Peyton BD, Cutler BS, Dobson JG Jr (1998) Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res 80(2):357–364

    Article  CAS  Google Scholar 

  28. Tofovic SP, Zacharia L, Carcillo JA, Jackson EK (2001) Inhibition of adenosine deaminase attenuates endotoxin-induced release of cytokines in vivo in rats. Shock. 16(3):196–202. https://doi.org/10.1097/00024382-200116030-00005

    Article  CAS  PubMed  Google Scholar 

  29. Fernández Hernández J, Heuze de Icaza YM (2007) El programa interno para el cuidado y uso de los animales de laboratorio en las instituciones biomédicas docentes, de investigación científica e industria farmacéutica. Acta Bioeth 13:17–24

    Article  Google Scholar 

  30. Naderi MM, Sarvari A, Milanifar A, Boroujeni SB, Akhondi MM (2012) Regulations and ethical considerations in animal experiments: international laws and islamic perspectives. Avicenna J Med Biotechnol 4(3):114–120

    PubMed  PubMed Central  Google Scholar 

  31. Russell WB, RL. (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  32. van Eijk LT, Dorresteijn MJ, Smits P, van der Hoeven JG, Netea MG, Pickkers P (2007) Gender differences in the innate immune response and vascular reactivity following the administration of endotoxin to human volunteers. Crit Care Med 35(6):1464–1469. https://doi.org/10.1097/01.ccm.0000266534.14262.e8

    Article  PubMed  Google Scholar 

  33. Shrum B, Anantha RV, Xu SX, Donnelly M, Haeryfar SM, McCormick JK et al (2014) A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes 7:233. https://doi.org/10.1186/1756-0500-7-233

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanders ER (2012) Aseptic laboratory techniques: plating methods. J Vis Exp : JoVE 63:e3064. https://doi.org/10.3791/3064

    Article  Google Scholar 

  35. Mena M, Lloveras B, Tous S, Bogers J, Maffini F, Gangane N, Kumar RV, Somanathan T, Lucas E, Anantharaman D, Gheit T, Castellsagué X, Pawlita M, de Sanjosé S, Alemany L, Tommasino M, the HPV-AHEAD study group (2017) Development and validation of a protocol for optimizing the use of paraffin blocks in molecular epidemiological studies: the example from the HPV-AHEAD study. PLoS One 12(10):e0184520. https://doi.org/10.1371/journal.pone.0184520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Masserdotti C (2006) Architectural patterns in cytology: correlation with histology. Vet Clin Pathol 35(4):388–396

    Article  Google Scholar 

  37. Giachini FR, Carriel V, Capelo LP, Tostes RC, Carvalho MH, Fortes ZB et al (2008) Maternal diabetes affects specific extracellular matrix components during placentation. J Anat 212(1):31–41. https://doi.org/10.1111/j.1469-7580.2007.00839.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 414(6866):916–920. https://doi.org/10.1038/414916a

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan GW, Linden J, Buster BL, Scheld WM (1999) Neutrophil A2A adenosine receptor inhibits inflammation in a rat model of meningitis: synergy with the type IV phosphodiesterase inhibitor, rolipram. J Infect Dis 180(5):1550–1560. https://doi.org/10.1086/315084

    Article  CAS  PubMed  Google Scholar 

  40. Varani K, Padovan M, Vincenzi F, Targa M, Trotta F, Govoni M, Borea P (2011) A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther 13(6):R197. https://doi.org/10.1186/ar3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Link AA, Kino T, Worth JA, McGuire JL, Crane ML, Chrousos GP et al (2000) Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J Immunol (Baltimore, Md : 1950) 164(1):436–442

    Article  CAS  Google Scholar 

  42. Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol (Baltimore, Md : 1950) 174(2):1073–1080

    Article  CAS  Google Scholar 

  43. Belikoff B, Hatfield S, Sitkovsky M, Remick DG (2011) Adenosine negative feedback on A2A adenosine receptors mediates hyporesponsiveness in chronically septic mice. Shock (Augusta, Ga) 35(4):382–387. https://doi.org/10.1097/SHK.0b013e3182085f12

    Article  CAS  Google Scholar 

  44. Khoa ND, Montesinos MC, Reiss AB, Delano D, Awadallah N, Cronstein BN (2001) Inflammatory cytokines regulate function and expression of adenosine A(2A) receptors in human monocytic THP-1 cells. J Immunol (Baltimore, Md : 1950) 167(7):4026–4032

    Article  CAS  Google Scholar 

  45. Csoka B, Nemeth ZH, Virag L, Gergely P, Leibovich SJ, Pacher P et al (2007) A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood. 110(7):2685–2695. https://doi.org/10.1182/blood-2007-01-065870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK et al (2018) Innate immunity in the persistent inflammation, immunosuppression, and catabolism syndrome and its implications for therapy. Front Immunol 9:595. https://doi.org/10.3389/fimmu.2018.00595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reinhart K, Menges T, Gardlund B, Harm Zwaveling J, Smithes M, Vincent JL, Maria Tellado J, Salgado-Remigio A, Zimlichman R, Withington S, Tschaikowsky K, Brase R, Damas P, Kupper H, Kempeni J, Eiselstein J, Kaul M (2001) Randomized, placebo-controlled trial of the anti-tumor necrosis factor antibody fragment afelimomab in hyperinflammatory response during severe sepsis: the RAMSES Study. Crit Care Med 29(4):765–769. https://doi.org/10.1097/00003246-200104000-00015

    Article  CAS  PubMed  Google Scholar 

  48. Poli-de-Figueiredo LF, Garrido AG, Nakagawa N, Sannomiya P (2008) Experimental models of sepsis and their clinical relevance. Shock. 30(Suppl 1):53–59. https://doi.org/10.1097/SHK.0b013e318181a343

    Article  CAS  PubMed  Google Scholar 

  49. Starr ME, Steele AM, Saito M, Hacker BJ, Evers BM, Saito H (2014) A new cecal slurry preparation protocol with improved long-term reproducibility for animal models of sepsis. PLoS One 9(12):e115705. https://doi.org/10.1371/journal.pone.0115705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dejager L, Pinheiro I, Dejonckheere E, Libert C (2011) Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol 19(4):198–208. https://doi.org/10.1016/j.tim.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  51. Fang H, Gong C, Fu J, Liu X, Bi H, Cheng Y et al (2020) Evaluation of 2 rat models for sepsis developed by improved cecal ligation/puncture or feces intraperitoneal-injection. Med Sci Monit 26:e919054. https://doi.org/10.12659/MSM.919054

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gallos G, Ruyle TD, Emala CW, Lee HT (2005) A1 adenosine receptor knockout mice exhibit increased mortality, renal dysfunction, and hepatic injury in murine septic peritonitis. Am J Physiol Renal Physiol 289(2):F369–F376. https://doi.org/10.1152/ajprenal.00470.2004

    Article  CAS  PubMed  Google Scholar 

  53. Csoka B, Nemeth ZH, Rosenberger P, Eltzschig HK, Spolarics Z, Pacher P et al (2010) A2B adenosine receptors protect against sepsis-induced mortality by dampening excessive inflammation. J Immunol 185(1):542–550. https://doi.org/10.4049/jimmunol.0901295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee HT, Kim M, Joo JD, Gallos G, Chen JF, Emala CW (2006) A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis. Am J Physiol Regul Integr Comp Physiol 291(4):R959–R969. https://doi.org/10.1152/ajpregu.00034.2006

    Article  CAS  PubMed  Google Scholar 

  55. Barletta KE, Ley K, Mehrad B (2012) Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 32(4):856–864. https://doi.org/10.1161/ATVBAHA.111.226845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peters K, Unger RE, Brunner J, Kirkpatrick CJ (2003) Molecular basis of endothelial dysfunction in sepsis. Cardiovasc Res 60(1):49–57

    Article  CAS  Google Scholar 

  57. Acurio J, Herlitz K, Troncoso F, Aguayo C, Bertoglia P, Escudero C (2017) Adenosine A(2A) receptor regulates expression of vascular endothelial growth factor in feto-placental endothelium from normal and late-onset pre-eclamptic pregnancies. Purinergic Signal 13(1):51–60. https://doi.org/10.1007/s11302-016-9538-z

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki T, Hashimoto S, Toyoda N, Nagai S, Yamazaki N, Dong HY, Sakai J, Yamashita T, Nukiwa T, Matsushima K (2000) Comprehensive gene expression profile of LPS-stimulated human monocytes by SAGE. Blood. 96(7):2584–2591

    Article  CAS  Google Scholar 

  59. Zhang W, Wang J, Wang H, Tang R, Belcher JD, Viollet B, Geng JG, Zhang C, Wu C, Slungaard A, Zhu C, Huo Y (2010) Acadesine inhibits tissue factor induction and thrombus formation by activating the phosphoinositide 3-kinase/Akt signaling pathway. Arterioscler Thromb Vasc Biol 30(5):1000–1006. https://doi.org/10.1161/ATVBAHA.110.203141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL (2014) Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 5(1):73–79. https://doi.org/10.4161/viru.26482

    Article  PubMed  Google Scholar 

  61. Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D et al (1999) A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 19(21):9192–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the research staff of the Vascular Physiology Laboratory from the Universidad del Bío-Bío for their technical support. We also thank the researchers from the GRIVAS Health group for the outstanding discussion of the ideas presented in this manuscript.

Funding

This study was supported by Fondequip EQM140104, DIUBB 184309 4/R, and GI 171709/VC. CE is currently supported by Fondecyt Regular 1200250.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out as collaboration among all authors. CE defined the research topic. MM and JA performed most of the experiments. SSM and PS performed immunohistochemistry and tissue analysis. KH and FT helped in the animal care and in vivo analysis. MM and CE co-wrote the manuscript. CA, MG, AG, and PT-V critically monitored experimental work and review the manuscript. All authors edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Carlos Escudero.

Ethics declarations

Conflicts of interest

Miguel Meriño declares that he has not conflict of interest.

Sebastián San Martín declares that he has not conflict of interest.

Pedro Sandaña declares that he has not conflict of interest.

Kurt Herlitz declares that he has not conflict of interest.

Claudio Aguayo declares that he has not conflict of interest.

Alejandro Godoy declares that he has not conflict of interest.

Pablo Torres-Vergara declares that he has not conflict of interest.

Marcelo Gonzalez declares that he has not conflict of interest.

Felipe Troncoso declares that he has not conflict of interest.

Jesenia Acurio declares that she has not conflict of interest.

Carlos Escudero declares that he has not conflict of interest.

Ethical approval

All the experiments were performed following the recommendations of the guidelines for the Care and Use of Laboratory Animals published by the US National Institute of Health. The Ethical Committee from the Universidad del Bio Bio (UBB) and FONDECYT (FONDECYT 1140586, Chile) approved the protocol.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meriño, M., Martín, S.S., Sandaña, P. et al. Deletion of the adenosine A2A receptor increases the survival rate in a mice model of polymicrobial sepsis. Purinergic Signalling 16, 427–437 (2020). https://doi.org/10.1007/s11302-020-09719-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09719-w

Keywords

Navigation