Skip to main content
Log in

Biosensor Application of One-Dimensional Photonic Crystal for Malaria Diagnosis

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A simple one-dimensional photonic crystal with a defect layer is presented as a biosensor for malaria diagnosis. Here, the defect layer is taken as blood sample of the patient where a concentration change gives rise to a significant variation of refractive index when compared with a normal blood sample. This variation of refractive index causes a shift in the transmission peak corresponding to a defect state, which can be used to diagnose malaria. The well-known transfer matrix method is used to calculate the transmission spectra. The sensitivity, quality factor, detection limit, and response time of the proposed structure are estimated as 495.73 nm/RIU, 2.03 × 105, 8.07 × 10−6 RIU, and 73.8 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO report 2019 available at https://www.who.int/malaria/publications/world-malaria-report-2019/en/

  2. Agnero MA, Konan K, Tokou ZGCS, Kossonou YTA, Dion BS, Kaduki KA, Zoueu JT (1996) Malaria-infected red blood cell analysis through optical and biochemical parameters using the transport of intensity equation and the microscope’s optical properties. Sensors 19:3045

    Article  Google Scholar 

  3. Erdman LK, Kain KC (2008) Molecular diagnostic and surveillance tools for global malaria control. Travel Med Infect Dis 6:82–99

    Article  Google Scholar 

  4. Clendennen TE, Long GW, Baird KJ (1995) QBC and Giemsa stained thick blood films: diagnostic performance of laboratory technologists. Trans R Soc Trop Med Hyg 89:183–184

    Article  Google Scholar 

  5. Bell D, Wongsrichanalai C, Barnwell JW (2006) Ensuring quality and access for malaria diagnosis: how can it be achieved? Nat Rev Microbiol 4:S7–S20

    Article  Google Scholar 

  6. Hanscheid T, Grobusch MP (2002) How useful is PCR in the diagnosis of malaria? Trends Parasitol 18:395–398

    Article  CAS  Google Scholar 

  7. She RC, Rawlins ML, Mohl R, Perkins SL, Hill HR, Litwin CM (2007) Comparison of immunofluorescence antibody testing and two enzyme immunoassays in the serologic diagnosis of malaria. J Travel Med 14:105–111

    Article  Google Scholar 

  8. Poon LL, Wong BW, Ma EH, Chan KH, Chow LM, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S, Peiris JS (2006) Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem 52:303–306

    Article  CAS  Google Scholar 

  9. Wongchotigul V, Suwanna N, Krudsood S, Chindanond D, Kano S, Hanaoka N, Akai Y, Maekawa Y, Nakayama S, Kojima S, Looareesuwan S (2004) The use of flow cytometry as a diagnostic test for malaria parasites. Southeast Asian J Trop Med Public Health 35:552–559

    PubMed  Google Scholar 

  10. Patarakul K (2008) Role of DNA microarray in infectious diseases. Chula Med J 52:147–153

    Google Scholar 

  11. De Langen AJ, Dillen JV, De Witte P, Mucheto S, Nagelkerke N, Kager P (2006) Automated detection of malaria pigment: feasibility for malaria diagnosing in an area with seasonal malaria in northern Namibia. Tropical Med Int Health 11:809–816

    Article  Google Scholar 

  12. Scholl PF, Kongkasuriyachai D, Demirev PA, Feldman AB, Lin JS, Sullivan DJ Jr, Kumar N (2004) Rapid detection of malaria infection in vivo by laser desorption mass spectrometry. Am J Trop Med Hyg 71:546–551

    Article  CAS  Google Scholar 

  13. Payne D (1988) Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ 66:621–628

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sulzer AJ, Wilson M, Hall EC (1969) Indirect fluorescent-antibody tests for parasitic diseases. An evaluation of a thick-smear antigen in the IFA test for malaria antibodies. Am J Trop Med Hyg 18:199–205

    Article  CAS  Google Scholar 

  15. Grobusch MP, Hänscheid T, Krämer B, Neukammer J, May J, Seybold J, Kun JF, Suttorp N (2003) Sensitivity of hemozoin detection by automated flow cytometry in non- and semi-immune malaria patients. Cytometry B Clin Cytom 55:46–51

    Article  Google Scholar 

  16. Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, Liebowitz L, Marshall L, Scott S, Coetzer TL (1999) Automated malaria detection by depolarization of laser light. Br J Haematol 104:499–503

    Article  CAS  Google Scholar 

  17. Banerjee A (2019) Enhancement in sensitivity of blood glucose sensor by using 1D defect ternary photonic band gap structures. J Opt 48(2):262–265

    Article  Google Scholar 

  18. Sharma P, Sharan P (2015) Design of photonic crystal based ring resonator for detection of different blood constituents. Opt Commun 348:19–23

    Article  CAS  Google Scholar 

  19. Arunkumar R, Suaganya T, Robinson S (2019) Design and analysis of 2D photonic crystal based biosensor to detect different blood components. Photonic Sens 9:69–77

    Article  CAS  Google Scholar 

  20. Gharsallah Z, Najjar M, Suthar B, Janyani V (2018) High sensitivity and ultra-compact optical biosensor for detection of UREA concentration. Opt Quant Electron 50:249

    Article  Google Scholar 

  21. Born M, Wolf E (1970) Principles of Optics, 4th edn. Pergamon, Oxford

    Google Scholar 

  22. Savin S, Digonnet MJF, Kino GS, Shaw HJ (2000) Tunable mechanically induced long-period fiber gratings. Opt Lett 25(10):710–712

    Article  CAS  Google Scholar 

  23. Sharma V, Kalyani VL (2017) Design two dimensional nanocavity photonic crystal biosensor detection in malaria. Inter J Emerg Res Manag Techn 6(6):16–20

    Article  Google Scholar 

  24. Bendib S, Bendib C (2018) Research photonic crystals for malaria detection. J Biosen Bioelectron 9(3):1000257 1-4

    Article  Google Scholar 

  25. Suthar B, Nagar AK, Bhargava A (2009) Tuning the localized mode in point defect chalcogenide photonic crystal. Chalcogenide Lett 6(11):623–627

    CAS  Google Scholar 

  26. Suthar B, Bhargava A (2010) Improving the optical tuning and spectral efficiency in chalcogenide photonic quantum well structures. J Ovonic Res 6(3):117

    CAS  Google Scholar 

  27. Green MA, Keevers MJ (1995) Optical properties of intrinsic silicon at 300 K. Prog Photovolt Res Appl 3:189–192

    Article  CAS  Google Scholar 

  28. Ghosh G, Endo M, Iwasalu T (1994) Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. J Light Wave Techn 12(8):1338–1342

  29. Yeh P (1988) Optical waves in layered media. John Wiley and Sons, New York

    Google Scholar 

  30. Suthar B, Bhargava A (2012) Enlargement of omni-directional reflection by cascading chalcogenide based photonic crystals. Opt Commun 285(6):1481–1485

    Article  CAS  Google Scholar 

  31. Agnero MA, Konan K, Tokou ZGCS, Kossonou YTA, Dion BS, Kaduki KA, Zoueu JT (2019) Malaria-infected red blood cell analysis through optical and biochemical parameters using the transport of intensity equation and the microscope’s optical sroperties. Sensors 19(14):3045

    Article  CAS  Google Scholar 

  32. Friebel M, Meinke MC (2005) Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements. J Biomed Opt 10(6):064019

    Article  Google Scholar 

  33. Kim K, Yoon H, Diez-Silva M, Dao M, Dasari RR, Park Y (2013) High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. J Biomed Opt 19(1):011005

    Article  Google Scholar 

  34. Shaked NT, Satterwhite LL, Telen MJ, Truskey GA, Wax A (2011) Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry. J Biomed Opt 16(3):030506–030506

    Article  Google Scholar 

  35. Zhu B, Ren G, Zheng S, Lin Z, Jian S (2013) Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt Express 21:17089–17096

    Article  Google Scholar 

Download references

Funding

One of authors (Ankita) is thankful to the UGC, New Delhi, for the financial support as Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvneshwer Suthar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankita, Suthar, B. & Bhargava, A. Biosensor Application of One-Dimensional Photonic Crystal for Malaria Diagnosis. Plasmonics 16, 59–63 (2021). https://doi.org/10.1007/s11468-020-01259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01259-8

Keywords

Navigation