Skip to main content
Log in

Critical Evaluation and Thermodynamic Optimization of the Fe-P System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Thermodynamic optimization of the Fe-P system was performed using the CALculation of PHAse Diagrams (CALPHAD) method based on critical evaluation of all available phase equilibria and thermodynamic data. The Gibbs energies of liquid phase and solid solutions were described using the Modified Quasichemical Model and Compound Energy Formalism, respectively. The Fe-P phase diagram, thermodynamic properties of P in liquid Fe and stability of intermediate iron phosphides (Fe3P, Fe2P, FeP and FeP2) in the entire composition range were reoptimized for resolving the discrepancies left in the previously optimized database. Several problems in previous assessments were resolved, and a more accurate and consistent description of the Fe-P system was achieved compared to experimental data. The distribution of P between molten Fe-P alloys and slag at different temperatures was also calculated to present the applicability of the present work to steel dephosphorization calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I.-H. Jung, P. Hudon, W.-Y. Kim, M. A. van Ende, M. Rahman, and G. G. Curiel: High Temp. Mater. Proc., 2013, vol. 32(3), pp. 247-54.

    CAS  Google Scholar 

  2. Okamoto H (1990) Bull. Alloy Phase Dia 11(4):404-12.

    CAS  Google Scholar 

  3. M. E. Schlesinger: Chemical Reviews, 2002, vol. 102(11), pp. 4267-302.

    CAS  Google Scholar 

  4. P. Spencer and O. Kubaschewski: Arch. Eisenhüttenwes., 1978, vol. 49(5), pp. 225-28.

    CAS  Google Scholar 

  5. P. Gustafson, Internal Report IM-2549, Swedish Institue for Metals Research, Stockholm, Sweden, 1990.

    Google Scholar 

  6. J. H. Shim, C. S. Oh, and D. N. Lee: J. Korean. Inst. Met. Mater., 1996, vol. 34(11), pp. 1385-93.

    CAS  Google Scholar 

  7. H. Ohtani, N. Hanaya, M. Hasebe, S. I. Teraoka, and M. Abe: CALPHAD, 2006, vol. 30(2), pp. 147-58.

    CAS  Google Scholar 

  8. Z. M. Cao, K. P. Wang, Z. Y. Qiao, and G. W. Du: Acta Phys. Chim. Sinica, 2012, vol. 28(1), pp. 37-43.

    CAS  Google Scholar 

  9. Z. M. Cao, W. Xie, K. P. Wang, C. J. Niu, G. W. Du, and Z. Y. Qiao: Acta Phys. Chim. Sinica, 2013, vol. 29(10), pp. 2148-56.

    CAS  Google Scholar 

  10. Zaitsev AI, Dobrokhotova ZV, Litvina AD, Mogutnov BM (1995) J CSFT. 91(4):703-12.

    CAS  Google Scholar 

  11. A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31(4), pp. 651-59.

    CAS  Google Scholar 

  12. A. D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32(6), pp. 1355-60.

    CAS  Google Scholar 

  13. Hillert M (2001) J. Alloys Comp. 320(2):161-76.

    CAS  Google Scholar 

  14. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. B. Mahfoud, and S. Petersen: CALPHAD, 2002, vol. 26(2), pp. 189-228.

    CAS  Google Scholar 

  15. A. T. Dinsdale: CALPHAD, 1991, vol. 15(4), pp. 317-25.

    CAS  Google Scholar 

  16. G. Inden: Eisenforschung, GmbH, Dusseldorf, Germany, 1976.

    Google Scholar 

  17. M. Hillert and M. Jarl: CALPHAD, 1978, vol. 2(3), pp. 227-38.

    CAS  Google Scholar 

  18. W. Jeitschko and D. J. Braun: Acta Crystall. Section B: Struc. Crystall. Crys. Chem., 1978, vol. 34(11), pp. 3196-201.

    Google Scholar 

  19. D. Saklatwalla: J. Iron Steel Inst., 1908, vol. 77, pp. 92-103.

    Google Scholar 

  20. N. Konstantinov: Zeitsch. Anorg. Chem., 1910, vol. 66(1), pp. 209-28.

    CAS  Google Scholar 

  21. J. L. Haughton: J. Iron Steel Inst, 1927, vol. 115, pp. 417-33.

    Google Scholar 

  22. H. Hanemann and H. Voss: Zentr. Hutten. Walzwerke, 1927, vol. 31(19), pp. 245-48.

    CAS  Google Scholar 

  23. R. Vogel: Arch. Eisenhüttenwes., 1929, vol. 3(4), pp. 369-81.

    CAS  Google Scholar 

  24. G. Urbain: Mem. Sci. Rev. Metall., 1959, vol. 56, pp. 529-44.

    CAS  Google Scholar 

  25. J. Galey, L. Beaujard, P. Vallet, G. Urbain, J. Tordeux, P. Villette, and J. Foulard: Review. Métall., 1959, vol. 56(7), pp. 69-99.

    CAS  Google Scholar 

  26. E. Hornbogen: Trans. ASM, 1961, vol. 53, pp. 569-89.

    CAS  Google Scholar 

  27. K. Lorenz and H. Fabritius: Arch. Eisenhüttenwes., 1962, vol. 33(4), pp. 269-75.

    CAS  Google Scholar 

  28. E. Wachtel, G. Urbain, and E. Ubelacker, Compt. Rend., 1963, vol. 257, pp. 2470-72.

    CAS  Google Scholar 

  29. G. Troemel and K. Schwerdtfeger: Arch. Eisenhuttenwes., 1963, vol. 34(1), pp. 55-59.

    CAS  Google Scholar 

  30. H. Kaneko, T. Nishizawa, K. Tamaki, and A. Tanifuji: Nippon Kinzoku Gakkai-Si, 1965, vol. 29, pp. 166-70.

    CAS  Google Scholar 

  31. W. A. Fischer, K. Lorenz, H. Fabritius, A. Hoffmann, and G. Kalwa: Arch. Eisenhüttenwes., 1966, vol. 37(1), pp. 79-86.

    CAS  Google Scholar 

  32. A. S. Doan and J. I. Goldstein: Metall. Trans., 1970, vol. 1(6), pp. 1759-67.

    CAS  Google Scholar 

  33. P. Hofmann, K. Lohberg, and W. Reif: Arch. Eisenhüttenwes., 1970, vol. 41(10), pp. 975-82.

    CAS  Google Scholar 

  34. Ko M, Nishizawa T (1979) J JIM, 43(2):118-26.

    CAS  Google Scholar 

  35. E. Schurmann and H. P. Kaiser: Arch. Eisenhuttenwes., 1980, vol. 51(8), pp. 325-27.

    Google Scholar 

  36. T. Takayama, M. Y. Wey, and T. Nishizawa: Trans. JIM, 1981, vol. 22(5), pp. 315-25.

    Google Scholar 

  37. T. Tanaka: Ph.D. Dissertation, Osaka University, Japan, 1985.

  38. Z. I. Morita and T. Tanaka: Trans. ISIJ, 1986, vol. 26(2), pp. 114-20.

    CAS  Google Scholar 

  39. W. Huang: CALPHAD, 1989, vol. 13(3), pp. 243-52.

    CAS  Google Scholar 

  40. O. Beckman, L. Lundgren, P. Nordblad, P. Svedlindh, A. Törne, Y. Andersson, and S. Rundqvist, Physica Scripta, 1982, vol. 25(6A), pp. 679-81.

    CAS  Google Scholar 

  41. J. Leitner, P. Voňka, D. Sedmidubsky, and P. Svoboda: Thermo. Acta, 2010, vol. 497(1-2), pp. 7-13.

    CAS  Google Scholar 

  42. W. A. Roth, A. Meichsner, and H. Richter: Arch. Eisenhüttenwes., 1934, vol. 8, pp. 239-41.

    Google Scholar 

  43. F. Weibke, and G. Schrag: Z. Elektrochem., 1941, vol. 47, pp. 222-38.

    CAS  Google Scholar 

  44. G. Lewis and C. E. Myers: J. Phys. Chem., 1963, vol. 67(6), pp. 1289-92.

    CAS  Google Scholar 

  45. W. Franke, K. Meisel, and R. Juza: Z. Anorg. Chem. 1934, vol. 218(4), pp. 346-59.

    CAS  Google Scholar 

  46. Zhang J (1999) J. Uni. Sci. Tech. Beijing 6(3):174-177.

    CAS  Google Scholar 

  47. X. M. Yang, P. C. Li, J. Y. Li, M. Zhang, J. L. Zhang, and J. Zhang: Steel Res. Inter., 2014, vol. 85(3), pp. 426-460.

    CAS  Google Scholar 

  48. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007, pp. 40-70.

    Google Scholar 

  49. M. Yamamoto, K. Yamada, L. L. Meshkov, and E. Kato: Trans. ISIJ, 1982, vol. 22(4), pp. 262-68.

    Google Scholar 

  50. B. Bookey: J. Iron Steel Inst., 1952, vol. 172, pp. 61-66.

    CAS  Google Scholar 

  51. B. Bookey, F. D. Richardson and A. J. E. Welch: J. Iron Steel Inst., 1952, vol. 171, pp. 404-12.

    CAS  Google Scholar 

  52. H. Schenck, E. Steinmetz, and R. Gohlke: Arch. Eisenhuettenwes., 1966, vol. 37(10), pp. 775-78.

    CAS  Google Scholar 

  53. H. Schenck, E. Steinmet, and H. Gitizad: Arch. Eisenhuttenwes., 1969, vol. 40(8), pp. 597-602.

    CAS  Google Scholar 

  54. S. Ban-ya, N. Maruyama, and S. Fujino: Tetsu-to-Hagané, 1982, vol. 68(2), pp. 269-76.

    CAS  Google Scholar 

  55. E. Schurmann, H. P. Kaiser, and U. Hensgen: Arch. Eisenhuttenwes., 1981, vol. 52(2), pp. 51-55.

    Google Scholar 

  56. A. Y. Polyakov, Y. D. Pyshkin, V. T. Vovk, and K. Grigorov: Zhunal Fizicheskoi Khimii, 1975, vol. 49(1), pp. 126-29.

    CAS  Google Scholar 

  57. S. Ban-ya and M. Suzuki: Tetsu-to-Hagané, 1975, vol. 61(14), pp. 2933-42.

    CAS  Google Scholar 

  58. A. A. Granovskaya, and A. P. Lyubimov: Zh. Fiz. Khim., 1953, vol. 27, pp. 1443-45.

    CAS  Google Scholar 

  59. G. Urbain: Compt. Rend, 1957, vol. 244(8), pp. 1036-39.

    CAS  Google Scholar 

  60. M. Frohberg, J. Elliott, and H. Hadrys: Arch. Eisenhuttenwes., 1968, vol. 39(8), pp. 587-93.

    CAS  Google Scholar 

  61. K. Yamada and E. Kato: Tetsu-to-Hagané, 1979, vol. 65(2), pp. 264-72.

    CAS  Google Scholar 

  62. T. Saito, Y. Shiraishi, and M. Ismail: Mass Spectrometric Study of the Gaseous Phase in Equilibrium with Molten Iron-Phosphorus Alloys, Proceedings of the Fourth International Conference on Vacuum Metallurgy, Tokyo, June 4-8, 1973.

  63. H. Jung and P. Hudon: J. Amer. Ceram. Soc., 2012, vol. 95(11), pp. 3665-72.

    CAS  Google Scholar 

  64. W. Peter, O. W. Esche, and W. Willy (1956) Arch. Eisehuttenwes., 27:219-30.

    CAS  Google Scholar 

  65. G. Troemel and H. W. Fritze: Arch. Eisenhuttenwes., 1957, vol. 28(8), pp. 489-95.

    Google Scholar 

  66. H. Knueppel, F. Oeters and H. G. Dortmund: Arch. Eisehuttenwes., 1959, vol. 30(5), pp. 253-65.

    Google Scholar 

  67. G. Troemel and W. Fix: Arch. Eisenhuttenwes., 1962, vol. 33(11), pp. 745-55.

    CAS  Google Scholar 

  68. G. Troemel and W. Fritze: Arch. Eisenhuttenwes., 1959, vol. 30(8), pp. 461-72.

    Google Scholar 

  69. G. Troemel, W. Fix, and H. W. Fritze: Arch. Eisenhuttenwes., 1961, vol. 32(6), pp. 353-59.

    Google Scholar 

  70. R. Nagabayashi, M. Hino and S. Ban-ya: Tetsu-to-Hagané, 1988, vol. 74(8), pp. 1577-84.

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Steelmaking Consortium Members, Hyundai Steel, Tata Steel Europe, Posco, Doosan Heavy Industry and Construction, Nucor Steel, RioTinto Iron and Titanium, JFE Steel, Nippon Steel Corp., RHI-Magnesita, Voestalpine, SeAh Besteel and Natural Science and Engineering Research Council of Canada for supporting the present project. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant No. 2020R1A5A6017701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 27, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Z., Jung, IH. Critical Evaluation and Thermodynamic Optimization of the Fe-P System. Metall Mater Trans B 51, 3108–3129 (2020). https://doi.org/10.1007/s11663-020-01939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01939-0

Navigation