Skip to main content
Log in

In Situ Microfluidic Preparation and Solidification of Alginate Microgels

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Biomimetic fabrication of alginate beads has promising applications in the field of synthetic bioarchitecture. Combining microfluidic technology with in situ gelation enables the creation of alginate microgels with precisely tunable size, as well as allowing control of the crosslinking process. Owing to the wide range of applications of alginate microgel beads, this study aimed to develop various microfluidic models for the generation of such beads by investigating the influence of several parameters on their morphologies and dispersity. Four types of glass microfluidic chips with flow focusing or co-flowing droplet generators were used to continuously form alginate droplets, with the possibility of either internal or external alginate gelation by a cross-linking agent supplied by a microfluidic channel. In all four models, alginate was used at a fixed concentration, Span 80 was used as a surfactant to improve the long-term stability of the beads, either mineral oil or oleic acid was used as a continuous phase, and either calcium carbonate (CaCO3) or calcium chloride (CaCl2) was used as a crosslinking agent. The generated beads exhibited various architectures, including individual monodisperse or polydisperse beads, small clusters, and multicompartment systems. The results of the study revealed the importance of microfluidic design and gelation strategy for the generation of stable polymeric architectures. The current study proposes a simple user’s guide to create alginate microgels in various architectures. The fabricated biomimetic models in the form of polymeric-based vesicles can be further exploited in several applications, including cell-like structures, tissue engineering, and cell and drug encapsulation. Additional investigations will be needed, however, to improve these models so that they more closely resemble the natural structures of cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Rothman and J. Lenard, Science, 195, 743 (1977).

    CAS  Google Scholar 

  2. P. F. Devaux, Biochemistry, 30, 1163 (1991).

    CAS  Google Scholar 

  3. S. Damiati, in Biological, Physical and Technical Basics of Cell Engineering, G. M. Artmann, A. Artmann, A. A. Zhubanova, and I. Digel, Eds., Springer, Singapore, 2018, pp 3–27.

  4. E. Rideau, R. Dimova, P. Schwille, F. R. Wurm, and K. Landfester, Chem. Soc. Rev., 47, 8572 (2018).

    CAS  Google Scholar 

  5. C. Martino, S. H. Kim, L. Horsfall, A. Abbaspourrad, S. J. Rosser, J. Cooper, and D. A. Weitz, Angew. Chem. Int. Ed. Engl., 51, 6416 (2012).

    CAS  PubMed  Google Scholar 

  6. V. Guarino, R. Altobelli, F. della Sala, A. Borzacchiello, and L. Ambrosio, in Alginates and Their Biomedical Applications, Springer Series in Biomaterials Science and Engineering, B. H. A. Rehm and M. F. Moradali, Eds., Springer, Singapore, 2018, Chap. 4.

  7. X. Y. Zhang and P. Y. Zhang, Curr. Med. Chem., 13, 124 (2017).

    CAS  Google Scholar 

  8. S. Drotleff, U. Lungwitz, M. Breunig, A. Dennis, T. Blunk, J. Tessmar, and A. Göpferich, Eur. J. Pharm. Biopharm., 58, 385 (2004).

    CAS  PubMed  Google Scholar 

  9. N. P. Kamat, J. S. Katz, and D. A. Hammer, J. Phys. Chem. Lett., 2, 1612 (2011).

    CAS  PubMed  Google Scholar 

  10. G. Montalbano, S. Toumpaniari, A. Popov, P. Duan, J. Chen, K. Dalgarno, W. E. Scott, and A. M. Ferreira, Sci. Eng. C, 91, 236 (2018).

    CAS  Google Scholar 

  11. L. Sang, D. Luo, S. Xu, X. Wang, and X. Li, Mater. Sci. Eng. C, 31, 262 (2011).

    CAS  Google Scholar 

  12. S. Stratton, N. B. Shelke, K. Hoshino, S. Rudraiah, and S. G. Kumbar, Bioact. Mater., 1, 93 (2016).

    PubMed  Google Scholar 

  13. U. Remminghorst and B. H. Rehm, Biotechnol. Lett., 28, 1701 (2006).

    CAS  Google Scholar 

  14. M. Mancini, M. Moresi, and R. Rancini, J. Food Eng., 39, 369 (1999).

    Google Scholar 

  15. J. L. Drury, R G. Dennis, and D. J. Mooney, Biomaterials, 25, 3187 (2004).

    CAS  Google Scholar 

  16. J.-Y. Leong, W.-H. Lam, K.-W. Ho, W.-P. Voo, M. F.-X. Lee, H.-P. Lim, S.-L. Lim, B.-T. Tey, D. Poncelet, and E.-S. Chan, Particuology, 24, 44 (2016).

    CAS  Google Scholar 

  17. Q. Wang, S. Liu, H. Wang, J. Zhu, and Y. Yang, Colloids Surf. A: Physicochem. Eng. Aspects, 482, 371 (2015).

    CAS  Google Scholar 

  18. L. A. Caetano, A. J. Almeida, and L. M. Gonçalves, Mar. Drugs, 14, 90 (2016).

    Google Scholar 

  19. V. Singh and A. Singh, Alginates — Versatile Polymers in Biomedical Applications and Therapeutics, M. S. Hasnain and A. K. Nayak, Eds., Apple Academic Press, Oakville, 2019.

  20. J. Li and D. J. Mooney, Nat. Rev. Mater., 1, 16071 (2016).

    CAS  PubMed  Google Scholar 

  21. S. Damiati, U. B. Kompella, S. A. Damiati, and R. Kodzius, Genes, 9, 103 (2018).

    Google Scholar 

  22. S. Damiati, R. Mhanna, R. Kodzius, and E. K. Ehmoser, Genes, 9, 144 (2018).

    Google Scholar 

  23. C. Martino, T. Y. Lee, S. H. Kim, and A. J. de Mello, Biomicrofluidics, 9, 024101 (2015).

    PubMed  Google Scholar 

  24. Y. Elani, Biochem. Soc. Trans., 44, 723 (2016).

    CAS  PubMed  Google Scholar 

  25. R. K. Shah, H. C. Shum, A. C. Rowat, D. Lee, J. J. Agresti, A. S. Utada, L.-Y. Chu, J.-W. Kim, A. Fernandez-Nieves, C. J. Martinez, and D. A. Weitz, Mater. Today, 11, 18 (2008).

    CAS  Google Scholar 

  26. D. Mark, S. Haeberle, R. Zengerle, J. Ducree, and G. T. Vladisavljevic, J. Colloid Interface Sci., 336, 634 (2009).

    CAS  PubMed  Google Scholar 

  27. S. H. Ching, N. Bansal, and B. Bhandari, Crit. Rev. Food Sci. Nutr., 57, 1133 (2017).

    CAS  PubMed  Google Scholar 

  28. K. Y. Lee and D. J. Mooney, Prog. Polym. Sci., 37, 106 (2012).

    CAS  PubMed  Google Scholar 

  29. V. L. Workman, S. B. Dunnett, P. Kille, and D. D. Palmer, Biomicrofluidics, 1, 014105 (2007).

    CAS  Google Scholar 

  30. Y. Hu, G. Azadia, and A. M. Ardekani, Carbohydr. Polym, 120, 38 (2015).

    CAS  Google Scholar 

  31. D. Bardin, T. D. Martz, P. S. Sheeran, R. Shih, P. A. Dayton, and A. P. Lee, Lab Chip, 11, 3990 (2011).

    CAS  PubMed  Google Scholar 

  32. J. C. De La Vega, P. Elischer, T. Schneider, and U. O. Häfeli, Nanomedicine, 8, 265 (2013).

    CAS  Google Scholar 

  33. W. H. Tan and S. Takeuchi, Adv. Mater., 19, 2696 (2007).

    CAS  Google Scholar 

  34. C. M. Silva, J. M. Ribeiro, I. V. Figueiredo, A. R. Goncalves, and F. Veiga, Int. J. Pharm., 311, 1 (2006).

    CAS  Google Scholar 

  35. J. D. Wehking, M. Gabany, L. Chew, and R. Kumar, Microfluid. Nanofluid, 16, 441 (2014).

    CAS  Google Scholar 

  36. P. Gurikov and I. Smirnova, Gels, 4, 14 (2018).

    Google Scholar 

  37. E. Teston, V. Hingot, V. Faugeras, C. Errico, M. Bezagu, M. Tanter, and O. Couture, Biomed. Microdevices, 20, 94 (2018).

    CAS  Google Scholar 

  38. G. T. Vladisavljevic, I. Kobayashi, and M. Nakajima, Microfluid. Nanofluid., 10, 1199 (2011).

    CAS  Google Scholar 

  39. E. Amstad, M. Chemama, M. Eggersdorfer, L. R. Arriaga, M. P. Brenner, and D. A. Weitz, Lab Chip, 16, 4163 (2016).

    CAS  PubMed  Google Scholar 

  40. C.-H. Choi, J.-H. Jung, Y. W. Rhee, D.-P. Kim, S.-E. Shim, and C.-S. Lee, Biomed. Microdevices, 9, 855 (2007).

    CAS  PubMed  Google Scholar 

  41. T. S. Parreidt, M. Schott, M. Schmid, and K. Müller, Int. J. Mol. Sci., 19, 742 (2018).

    Google Scholar 

  42. F. Golmohammadi, M. Amiri, H. Gharibi, A. Yousefi, and M. Safari, J. Solution Chem., 49, 16 (2020).

    CAS  Google Scholar 

  43. N. M. Kovalchuk, E. Roumpea, E. Nowak, M. Chinaud, P. Angeli, and M. J. H. Simmons, Chem. Eng. Sci., 176, 139 (2018).

    CAS  Google Scholar 

  44. S. H. Ching, N. Bansal, and B. Bhandari, Crit. Rev. Food Sci. Nutr., 57, 1133 (2017).

    CAS  PubMed  Google Scholar 

  45. A. M. Padoł, G. Maurstad, K. I. Draget, and B. T. Stokke, Carbohydr. Polym., 133, 126 (2015).

    PubMed  Google Scholar 

  46. S. Damiati, Biomed. Microdevices, 21, 62 (2019).

    PubMed  Google Scholar 

  47. S. I. Haider Abdi, S. M. Ng, J. Y. Choi, J. M. Seo, and J. O. Lim, Macromol. Res., 18, 668 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Damiati.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: The author would like to thank Dolomite Microfluidics (Royston, UK) for supporting this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damiati, S. In Situ Microfluidic Preparation and Solidification of Alginate Microgels. Macromol. Res. 28, 1046–1053 (2020). https://doi.org/10.1007/s13233-020-8142-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8142-9

Keywords

Navigation