Skip to main content
Log in

Study of Active Water Absorption of Polystyrene-Based Ionomers

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The active water absorption behavior of poly(styrene-co-methacrylate] PSMANa and sulfonated polystyrene PSSNa ionomers was studied. On one hand, the acidic copolymers did not absorb water noticeably. On the other hand, the amount of water absorbed by the ionomer increased with increasing ion content. Especially when the ion contents of the PSMANa and PSSNa ionomers exceeded 6 and 10 mol%, respectively, the maximum amount of the water absorbed by the ionomers increased rapidly as the ion content increased. This indicated that the cluster-dominant ionomers exhibited stronger water absorption behavior, compared to the matrix-dominant ionomers. In addition, when the ion contents of the PSMANa and PSSNa ionomers were less than 6 and 10 mol%, respectively, the volume and shape of the bulk ionomers did not change significantly by the water absorption. Morphological studies on the soaked ionomers showed that the SAXS peak shifted to lower angles as the water uptake increased with increasing ion content of the ionomers, which was consistent with the results obtained by the swelling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Eisenberg and J.-S. Kim, Introduction to Ionomer, John Wiley & Sons, New York, 1998.

    Google Scholar 

  2. A. Eisenberg and M. Navratil, Macromolecules, 6, 604 (1973).

    Article  CAS  Google Scholar 

  3. M. Escoubes, M. Pineri, S. Gauthier, and A. Eisenberg, J. Appl. Polym. Sci., 29, 1249 (1984).

    Article  CAS  Google Scholar 

  4. S. Yano, K. Tadano, N. Nagao, E. Kutsumizu, H. Tachio, and E. Hirasawa, Macromolecules, 25, 7168 (1992).

    Article  CAS  Google Scholar 

  5. M. Jiang, A. A. Gronowski, H. L. Yeager, G. Wu, J.-S. Kim, and A. Eisenberg, Macromolecules, 27, 6541 (1994).

    Article  CAS  Google Scholar 

  6. H. Tachino, H. Hara, E. Kutsumizu, and S. Yano, J. Appl. Polym. Sci., 55, 131 (1995).

    Article  CAS  Google Scholar 

  7. G. Gebel, Polymer, 41, 5829 (2000).

    Article  CAS  Google Scholar 

  8. T. D. Gierke, J. Electrochem. Soc., 124, 319 (1977).

    Google Scholar 

  9. M. Falk, Can. J. Chem., 58, 1495 (1980).

    Article  CAS  Google Scholar 

  10. S. R. Lowry and K. A. Mauritz, J. Am. Chem. Soc., 102, 4665 (1980).

    Article  CAS  Google Scholar 

  11. W. Y. Hsu, J. R. Barley, and P. Meakin, Macromolecules, 13, 198 (1980).

    Article  CAS  Google Scholar 

  12. H. I. Yeager and A. Steck, J. Electrochem. Soc., 128, 1880 (1981).

    Article  CAS  Google Scholar 

  13. T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci. Polym. Phys. Ed., 19, 1687 (1981).

    Article  CAS  Google Scholar 

  14. V. K. Datye, P. L. Taylor, and A. J. Hopfinger, Macromolecules, 17, 1704 (1984).

    Article  CAS  Google Scholar 

  15. K. A. Mauritz and C. E. Rogers, Macromolecules, 18, 483 (1985).

    Article  CAS  Google Scholar 

  16. P. Aldebert, B. Dreyfus, G. Gebel, N. Nakamura, M. Pineri, and F. Volino, J. Phys. France, 49, 2101 (1988).

    Article  CAS  Google Scholar 

  17. K. A. Mauritz and R. B. Moore, Chem. Rev., 104, 4535 (2004) and references therein.

    Article  CAS  Google Scholar 

  18. K. Schmidt-Rohr and Q. Chen, Nat. Mater., 7, 75 (2008) and references therein.

    Article  CAS  Google Scholar 

  19. C. K. Knox and G. A. Voth, J. Phys. Chem. B, 114, 3205 (2010).

    Article  CAS  Google Scholar 

  20. D. Wu, S. J. Paddison, J. A. Elliott, and S. J. Hamrock, Langmuir, 26, 14308 (2010).

    Article  CAS  Google Scholar 

  21. J. A. Elliott, D. Wu, S. J. Paddison, and R. B. Moore, Soft Matter, 7, 6820 (2011).

    Article  CAS  Google Scholar 

  22. V. Klika, J. Kubant, M. Pavelka, and J. B. Benziger, J. Membr. Sci., 540, 35 (2017).

    Article  CAS  Google Scholar 

  23. A. Vishnyakov, R. Mao, M.-T. Lee, and A. V. Neimark, J. Chem. Phys., 148, 024108 (2018).

    Article  Google Scholar 

  24. P. A. Tamirisa and D. W. Hess, Macromolecules, 39, 7092 (2006).

    Article  CAS  Google Scholar 

  25. E. Sacher and J. R. Susko, J. Appl. Polym. Sci., 26, 679 (1981).

    Article  CAS  Google Scholar 

  26. S. J. Kim, S. R. Shin, S. M. Lee, I. Y. Kim, and S. I. Kim, J. Appl. Polym. Sci., 88, 2721 (2003).

    Article  CAS  Google Scholar 

  27. L. A. McDonough, B. Dragnea, J. Preusser, and S. R. Leone, J. Phys. Chem. B., 107, 4951 (2003).

    Article  CAS  Google Scholar 

  28. J.-S. Kim, R. J. Jackman, and A. Eisenberg, Macromolecules, 27, 2789 (1994).

    Article  CAS  Google Scholar 

  29. H. S. Makowski, R. D. Lundberg, and G. L. Singhal, US Patent 870,841 (1975).

  30. J. A. Lefelar and R. A. Weiss, Macromolecules, 17, 1145 (1984).

    Article  CAS  Google Scholar 

  31. B. Hird and A. Eisenberg, Macromolecules, 25, 6466 (1992).

    Article  CAS  Google Scholar 

  32. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Opt. Mater., 29, 1481 (2007).

    Article  CAS  Google Scholar 

  33. M. Daimon and A. Masumura, Appl. Optics, 46, 3811 (2007).

    Article  Google Scholar 

  34. S. N. Ege, Organic Chemistry: Structure and Reactivity, 5th ed., Houghton Mifflin Company, College Div., Boston, 2003.

    Google Scholar 

  35. P. Atkins and J. de Paula, Atkins’ Physical Chemistry, 10th ed., Oxford University Press, Oxford, 2014.

    Google Scholar 

  36. M. Fujimura, T. Hashimoto, and H. Kawai, Macromolecules, 15, 136 (1982).

    Article  CAS  Google Scholar 

  37. B. Dreyfus, G. Gebel, P. Aldebert, M. Pineri, M. Escoubes, and M. Thomas, J. Phys. France, 51, 1341 (1990).

    Article  CAS  Google Scholar 

  38. D. J. Yarusso and S. L. Cooper, Macromolecules, 16, 1871 (1983).

    Article  CAS  Google Scholar 

  39. J.-M. Song and J.-S. Kim, J. Nanosci. Nanotechnol., 8, 5454 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon-Seop Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This study was supported financially by Chosun University (2015 Intramural Research Grant).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, IS., Kim, JS. Study of Active Water Absorption of Polystyrene-Based Ionomers. Macromol. Res. 28, 932–938 (2020). https://doi.org/10.1007/s13233-020-8129-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8129-6

Keywords

Navigation