Skip to main content

Advertisement

Log in

The Effect of Optogenetic Inhibition of the Anterior Cingulate Cortex in Neuropathic Pain Following Sciatic Nerve Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cortical disinhibition is the underlying pathological alteration contributing to neuropathic pain associated with peripheral nerve injury. Nerve injury resulting in disinhibition of the anterior cingulate cortex has been reported. However, the effect of optogenetic inhibition of the anterior cingulate cortex (ACC) on the sensory component of nerve injury–induced neuropathic pain has not been well studied. To investigate the feasibility of optogenetic ACC modulation, we injected an optogenetic virus or a null virus into the ACC of a nerve injury–induced neuropathic pain model. The unilateral ACC was modulated, and the optogenetic effect was measured by mechanical and thermal sensitivity tests. The assessment was performed in “pre—light off,” “stimulation—yellow light on,” and “post—light off” states. Optogenetic inhibition of the ACC in injury models revealed improved mechanical and thermal latencies with profound pain-relieving effects against nerve injury–induced neuropathic pain. The sensory thalamic discharge in electrophysiological in vivo recordings was also altered during laser stimulation. This finding indicates that hyperactivity of the ACC in nerve injury increases output to the spinothalamic tract through direct or indirect pathways. The direct photoinhibition of ACC neurons could play a vital role in restoring equilibrium and provide novel insight into techniques that can assuage peripheral nerve injury–induced neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bennett GJ, Xie Y-K (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    PubMed  Google Scholar 

  • Blom SM, Pfister J-P, Santello M, Senn W, Nevian T (2014a) Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci 34:5754–5764

    PubMed  PubMed Central  Google Scholar 

  • Blom SM, Pfister JP, Santello M, Senn W, Nevian T (2014b) Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci 34:5754–5764. https://doi.org/10.1523/JNEUROSCI.3667-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai YQ, Wang W, Hou YY, Pan ZZ (2014) Optogenetic activation of brainstem serotonergic neurons induces persistent pain sensitization. Mol Pain 10:70. https://doi.org/10.1186/1744-8069-10-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T et al (2014) Postsynaptic potentiation of corticospinal projecting neurons in the anterior cingulate cortex after nerve injury. Mol Pain 10:33

    PubMed  PubMed Central  Google Scholar 

  • Chen T et al (2018) Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex. Nat Commun 9:1–17

    Google Scholar 

  • Chiou C-S, Chen C-C, Tsai T-C, Huang C-C, Chou D, Hsu K-S (2016) Alleviating bone cancer–induced mechanical hypersensitivity by inhibiting neuronal activity in the anterior cingulate cortex anesthesiology. J Am Soc Anesthesiol 125:779–792

    Google Scholar 

  • Daou I, Tuttle AH, Longo G, Wieskopf JS, Bonin RP, Ase AR, Wood JN, de Koninck Y, Ribeiro-da-Silva A, Mogil JS, Seguela P (2013) Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci 33:18631–18640

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Vry J, Kuhl E, Franken-Kunkel P, Eckel G (2004) Pharmacological characterization of the chronic constriction injury model of neuropathic pain. Eur J Pharmacol 491:137–148

    PubMed  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158. https://doi.org/10.1016/S0304-3959(00)00276-1

    Article  Google Scholar 

  • Deuis JR, Vetter I (2016) The thermal probe test: a novel behavioral assay to quantify thermal paw withdrawal thresholds in mice. Temperature (Austin) 3:199–207. https://doi.org/10.1080/23328940.2016.1157668

    Article  Google Scholar 

  • Ding Z et al (2018) Resveratrol promotes nerve regeneration via activation of p300 acetyltransferase-mediated VEGF signaling in a rat model of sciatic nerve crush injury. Front Neurosci 12:341–341. https://doi.org/10.3389/fnins.2018.00341

    Article  PubMed  PubMed Central  Google Scholar 

  • Dodla MC, Alvarado-Velez M, Mukhatyar VJ, Bellamkonda RV (2019) Peripheral nerve regeneration. In: Principles of regenerative medicine. Elsevier, pp 1223-1236

  • Fuchs PN, Peng YB, Boyette-Davis JA, Uhelski ML (2014a) The anterior cingulate cortex and pain processing. Front Integr Neurosci 8:35

    PubMed  PubMed Central  Google Scholar 

  • Fuchs PN, Peng YB, Boyette-Davis JA, Uhelski ML (2014b) The anterior cingulate cortex and pain processing. Front Integr Neurosci 8:35. https://doi.org/10.3389/fnint.2014.00035

    Article  PubMed  PubMed Central  Google Scholar 

  • Gage GJ, Kipke DR, Shain W (2012) Whole animal perfusion fixation for rodents. J Visual Exp:JoVE. https://doi.org/10.3791/3564

  • Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139

    PubMed  PubMed Central  Google Scholar 

  • Gu L, Uhelski ML, Anand S, Romero-Ortega M, Kim YT, Fuchs PN, Mohanty SK (2015) Pain inhibition by optogenetic activation of specific anterior cingulate cortical neurons. PLoS One 10:e0117746. https://doi.org/10.1371/journal.pone.0117746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guru A, Post RJ, Ho Y-Y, Warden MR (2015) Making sense of optogenetics. Int J Neuropsychopharmacol 18:pyv079. https://doi.org/10.1093/ijnp/pyv079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harte SE, Spuz CA, Borszcz GS (2011) Functional interaction between medial thalamus and rostral anterior cingulate cortex in the suppression of pain affect. Neuroscience 172:460–473

    CAS  PubMed  Google Scholar 

  • Hsieh J-C, Stone-Elander S, Ingvar M (1999) Anticipatory coping of pain expressed in the human anterior cingulate cortex: a positron emission tomography study. Neurosci Lett 262:61–64

    CAS  PubMed  Google Scholar 

  • Hsu MM, Shyu BC (1997) Electrophysiological study of the connection between medial thalamus and anterior cingulate cortex in the rat. Neuroreport 8:2701–2707. https://doi.org/10.1097/00001756-199708180-00013

    Article  CAS  PubMed  Google Scholar 

  • Huh Y, Bhatt R, Jung D, Shin H-S, Cho J (2012) Interactive responses of a thalamic neuron to formalin induced lasting pain in behaving mice. PLoS One 7:e30699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2:403–405

    CAS  PubMed  Google Scholar 

  • Im K, Mareninov S, Diaz MFP, Yong WH (2019) An introduction to performing immunofluorescence staining. Methods Molec Biol (Clifton NJ) 1897:299–311. https://doi.org/10.1007/978-1-4939-8935-5_26

    Article  CAS  Google Scholar 

  • Iwata M, LeBlanc BW, Kadasi LM, Zerah ML, Cosgrove RG, Saab CY (2011) High-frequency stimulation in the ventral posterolateral thalamus reverses electrophysiologic changes and hyperalgesia in a rat model of peripheral neuropathic pain. PAIN 152:2505–2513. https://doi.org/10.1016/j.pain.2011.07.011

    Article  PubMed  Google Scholar 

  • Iyer SM et al (2016) Optogenetic and chemogenetic strategies for sustained inhibition of pain. Sci Rep 6:30570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jagodic MM, Pathirathna S, Joksovic PM, Lee WY, Nelson MT, Naik AK, Su P, Jevtovic-Todorovic V, Todorovic SM (2008) Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 99:3151–3156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SJ et al (2015a) Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. Molec Brain 8:81

    Google Scholar 

  • Kang SJ et al (2015b) Bidirectional modulation of hyperalgesia via the specific control of excitatory and inhibitory neuronal activity in the ACC. Molec Brain 8:1–11

    Google Scholar 

  • KC E, Moon HC, Kim S, Kim HK, Won SY, Hyun SH, Park YS (2020) Optical modulation on the nucleus accumbens core in the alleviation of neuropathic pain in chronic dorsal root ganglion compression rat model. Neuromodulation 23:167–176

    PubMed  Google Scholar 

  • Kim JG, Lim DW, Cho S, Han D, Kim YT (2014) The edible brown seaweed Ecklonia cava reduces hypersensitivity in postoperative and neuropathic pain models in rats. Molecules 19:7669–7678. https://doi.org/10.3390/molecules19067669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KH, Byeon GJ, Kim HY, Baek SH, Shin SW, Koo ST (2015) Mechanical antiallodynic effect of intrathecal nefopam in a rat neuropathic pain model. J Korean Med Sci 30:1189–1196. https://doi.org/10.3346/jkms.2015.30.8.1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugler S, Kilic E, Bahr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347. https://doi.org/10.1038/sj.gt.3301905

    Article  CAS  PubMed  Google Scholar 

  • Kügler S, Kilic E, Bähr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10:337–347. https://doi.org/10.1038/sj.gt.3301905

    Article  CAS  PubMed  Google Scholar 

  • LaBuda CJ, Fuchs PN (2005) Attenuation of negative pain affect produced by unilateral spinal nerve injury in the rat following anterior cingulate cortex activation. Neuroscience 136:311–322

    CAS  PubMed  Google Scholar 

  • LaGraize SC, Labuda CJ, Rutledge MA, Jackson RL, Fuchs PN (2004) Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp Neurol 188:139–148

    PubMed  Google Scholar 

  • Lee GH, Kim SS (2016) Therapeutic strategies for neuropathic pain: potential application of pharmacosynthetics and optogenetics. Mediat Inflamm 2016:5808215

    Google Scholar 

  • Liu J et al (2015) Frequency-selective control of cortical and subcortical networks by central thalamus. Elife 4:e09215

    PubMed  PubMed Central  Google Scholar 

  • Liu S, Tang Y, Xing Y, Kramer P, Bellinger L, Tao F (2019) Potential application of optogenetic stimulation in the treatment of pain and migraine headache: a perspective from animal studies. Brain Sci 9. https://doi.org/10.3390/brainsci9020026

  • Luo F, Yang C, Chen Y, Shukla P, Tang L, Wang LX, Wang ZJ (2008) Reversal of chronic inflammatory pain by acute inhibition of Ca2+/calmodulin-dependent protein kinase II. J Pharmacol Exp Ther 325:267–275

    CAS  PubMed  Google Scholar 

  • McCutcheon JE et al (2014) Optical suppression of drug-evoked phasic dopamine release. Front Neural Circuits 8:114. https://doi.org/10.3389/fncir.2014.00114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. Neuroimage 37:S80–S88

    PubMed  Google Scholar 

  • Moon HC et al (2017) Optical inactivation of the anterior cingulate cortex modulate descending pain pathway in a rat model of trigeminal neuropathic pain created via chronic constriction injury of the infraorbital nerve. J Pain Res 10:2355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navratilova E et al (2015) Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci 35:7264–7271. https://doi.org/10.1523/JNEUROSCI.3862-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazeri M, Chamani G, Abareghi F, Mohammadi F, Talebizadeh M-H, Zarei M-R, Shabani M (2019) Sensory and affective dimensions of pain and anxiety like behaviors are altered in an animal model of pain empathy. Iran J Psychiatry 14:221

    PubMed  PubMed Central  Google Scholar 

  • Nirogi R, Goura V, Shanmuganathan D, Jayarajan P, Abraham R (2012) Comparison of manual and automated filaments for evaluation of neuropathic pain behavior in rats. J Pharmacol Toxicol Methods 66:8–13

    CAS  PubMed  Google Scholar 

  • Osaka N, Osaka M, Morishita M, Kondo H, Fukuyama H (2004) A word expressing affective pain activates the anterior cingulate cortex in the human brain: an fMRI study. Behav Brain Res 153:123–127

    PubMed  Google Scholar 

  • Saab CY (2012) Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci 35:629–637

    CAS  PubMed  Google Scholar 

  • Seifert F, Maihöfner C (2009) Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci 66:375

    CAS  PubMed  Google Scholar 

  • Shen F-Y et al (2015) Alleviation of neuropathic pain by regulating T-type calcium channels in rat anterior cingulate cortex. Mol Pain 11:s12990-12015-10008-12993

    Google Scholar 

  • Shevtsova Z, Malik JMI, Michel U, Bähr M, Kügler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90:53–59. https://doi.org/10.1113/expphysiol.2004.028159

    Article  CAS  PubMed  Google Scholar 

  • Shyu BC, Lin CY, Sun JJ, Chen SL, Chang C (2004) BOLD response to direct thalamic stimulation reveals a functional connection between the medial thalamus and the anterior cingulate cortex in the rat. Magn Reson Med 52:47–55. https://doi.org/10.1002/mrm.20111

    Article  PubMed  Google Scholar 

  • Sugimine S, Ogino Y, Kawamichi H, Obata H, Saito S (2016) Brain morphological alternation in chronic pain patients with neuropathic characteristics. Mol Pain 12:1744806916652408. https://doi.org/10.1177/1744806916652408

    Article  PubMed  PubMed Central  Google Scholar 

  • Tachibana K, Kato R, Tsuruga K, Takita K, Hashimoto T, Morimoto Y (2008) Altered synaptic transmission in rat anterior cingulate cortex following peripheral nerve injury. Brain Res 1238:53–58

    CAS  PubMed  Google Scholar 

  • Wei F, Zhuo M (2008) Activation of Erk in the anterior cingulate cortex during the induction and expression of chronic pain. Mol Pain 4:1744-8069-1744-1728

    Google Scholar 

  • Xiao X, Zhang YQ (2018) A new perspective on the anterior cingulate cortex and affective pain. Neurosci Biobehav Rev 90:200–211. https://doi.org/10.1016/j.neubiorev.2018.03.022

    Article  PubMed  Google Scholar 

  • Xiao Z et al (2019) Cortical pain processing in the rat anterior cingulate cortex and primary somatosensory cortex. Front Cell Neurosci 13:165

    PubMed  PubMed Central  Google Scholar 

  • Xu H, Wu LJ, Wang H, Zhang X, Vadakkan KI, Kim SS, Steenland HW, Zhuo M (2008) Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 28:7445–7453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Liu Y, Sun Y, Li H, Mi W, Jiang Y (2018) Analgesic effects of TLR4/NF-κB signaling pathway inhibition on chronic neuropathic pain in rats following chronic constriction injury of the sciatic nerve. Biomed Pharmacother 107:526–533

    CAS  PubMed  Google Scholar 

  • Yizhar O et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178. https://doi.org/10.1038/nature10360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachariou V, Carr F (2014) Nociception and pain: lessons from optogenetics. Front Behav Neurosci 8:69

    PubMed  PubMed Central  Google Scholar 

  • Zhao P, Waxman SG, Hains BC (2006) Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Mol Pain 2:27

    PubMed  PubMed Central  Google Scholar 

  • Zhao R, Zhou H, Huang L, Xie Z, Wang J, Gan W-B, Yang G (2018) Neuropathic pain causes pyramidal neuronal hyperactivity in the anterior cingulate cortex. Front Cell Neurosci 12:107

    PubMed  PubMed Central  Google Scholar 

  • Zhuang X et al. (2019) The anterior cingulate cortex projection to the dorsomedial striatum modulates hyperalgesia in a chronic constriction injury mouse model. Arch Med Sci 15

  • Zhuo M (2006) Molecular mechanisms of pain in the anterior cingulate cortex. J Neurosci Res 84:927–933

    CAS  PubMed  Google Scholar 

  • Zhuo M (2008) Cortical excitation and chronic pain. Trends Neurosci 31:199–207

    CAS  PubMed  Google Scholar 

  • Zhuo M (2014a) Long-term potentiation in the anterior cingulate cortex and chronic pain. Philosoph Transact R Soc B: Biol Sci 369:20130146

    Google Scholar 

  • Zhuo M (2014b) Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos Trans R Soc Lond Ser B Biol Sci 369:20130146. https://doi.org/10.1098/rstb.2013.0146

    Article  CAS  Google Scholar 

  • Zimmermann M (1986) Ethical considerations in relation to pain in animal experimentation. Acta Physiol Scand Suppl 554:221–233

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF 2016H1D5A1908909, NRF 2015H1D3A1066175, NRF 2014K1A3A1A21001372, and NRF 2019R1I1A1A0159554). This work was financially supported by the Research Year of Chungbuk National University in 2018.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: YSP, ELINA, and HCM. Acquisition of data: ELINA and JAISAN. Analysis and interpretation: HCM and ELINA. Writing article: YSP, ELINA, and HCM. Critical review of article: YSP and HKK. Final approval for publication: YSP. Agreement to be accountable for all aspects of the work: ELINA, HCM, and YSP.

Corresponding author

Correspondence to Young Seok Park.

Ethics declarations

Animal experiments were performed according to the national guidelines and with approval from the Institutional Animal Care Committee of Chungbuk National University (CBNUR-1072-17).

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclaimer

This work was conducted during the 2018–2019 research year at Chungbuk National University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1.

Experimental timeline and design. (A) Study timeline in weeks. (B) Induction of neuropathic pain by sciatic nerve constriction. (C) Schematic diagram of optogenetic virus injection into the anterior cingulate cortex. (PNG 385 kb)

High Resolution (TIF 3499 kb)

Supplementary Figure 2.

Transfection efficiency and quantification. (A) Schematic coronal section of anterior cingulate cortex with EYFP transfection. (B) Comparison of transfection efficiency among CCI-NpHr and sham groups expressed on percentage. No significant differences were found {n=3 per group, Ordinary one-way analysis of variance (ANOVA)}. (C) Quantification of EYFP/DAPI positive cells between groups {(insignificant differences were found, n=3 per group, Ordinary one-way analysis of variance (ANOVA)}. (D) Quantification of c-Fos/DAPI-positive cells. CCI rats showed increased c-Fos expression in ACC compared to sham controls. **** P < 0.0001. n = 3 rats per group. Ordinary one-way analysis of variance (ANOVA). Values represent mean ± SD. (PNG 194 kb)

High Resolution (TIF 760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elina, K.C., Moon, H.C., Islam, J. et al. The Effect of Optogenetic Inhibition of the Anterior Cingulate Cortex in Neuropathic Pain Following Sciatic Nerve Injury. J Mol Neurosci 71, 638–650 (2021). https://doi.org/10.1007/s12031-020-01685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01685-7

Keywords

Navigation