Skip to main content

Advertisement

Log in

Ultraviolet-protecting, flexible and stable photovoltaic-assisted piezoelectric hybrid unit nanogenerator for simultaneously harvesting ultraviolet light and mechanical energies

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Owing to the ecological destruction and the energy crisis, harvesting green energy from the environment has become a hot issue in modern times. Here, a facile, flexible and stable hybrid unit nanogenerator (NG) with ultraviolet (UV) protection based on poly(vinylidene fluoride) (PVDF) piezoelectric nanogenerator (PENG) unit and ultraviolet photovoltaic (SC) unit is fabricated. Specially, self-made thiophenyl soluble conjugated polymer (scp)/zinc oxide (ZnO) quantum dots nanocomposite film was prepared by spin-coating in ambient air condition as UV photoelectric and UV-protective thin film. The flexible photovoltaic films were found to exhibit good photovoltaic performance with a dominating fraction of UV absorption. Under external mechanical forces and UV LED illumination, and the open-circuit output voltage and short-circuit current of the device were significantly enhanced by UV LED constant light exposure. To specify this device performance, the effects of different external mechanical forces and UV illumination on the output of hybrid unit are also analyzed, the open-circuit output voltage of the device was significantly influenced by UV illumination. To demonstrate the practical applications of flexible hybrid unit NG, it exhibits high performance with a maximum power density of 0.97 mW/cm3. The device is able to charge a 33-μF capacitor to 3.6 V within a short time span (60 s) and drive a red LED for a few seconds. This work explores new prospects for UV-protective energy harvesting which can eventually boost up the self-powered electronic robotics and wearable systems based on renewable energy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    CAS  Google Scholar 

  2. Mitchard ETA (2018) The tropical forest carbon cycle and climate change. Nature 559:527–534

    CAS  Google Scholar 

  3. Shin JC, Mohseni PK, Yu KJ, Tomasulo S, Montgomery KH, Lee ML, Rogers JA, Li X (2012) Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement. ACS Nano 6:11074–11079

    CAS  Google Scholar 

  4. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    CAS  Google Scholar 

  5. Yang Y, Zhang H, Zhu G, Lee S, Lin ZH, Wang ZL (2013) Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7:785–790

    CAS  Google Scholar 

  6. Lee J-H, Kim J, Kim TY, Al Hossain MS, Kim S-W, Kim JH (2016) All-in-one energy harvesting and storage devices. J Mater Chem A 4(21):7983–7999

    CAS  Google Scholar 

  7. Duan J, Tang Q (2019) A revolution of photovoltaics: persistent electricity generation beyond solar irradiation. Dalton Trans 48:799–805

    CAS  Google Scholar 

  8. Zhang Q, Zhang Z, Liang Q, Gao F, Yi F, Ma M, Liao Q, Kang Z, Zhang Y (2019) Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy 55:151–163

    CAS  Google Scholar 

  9. Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726–731

    CAS  Google Scholar 

  10. Chen X, Shao J, An N, Li X, Tian H, Xu C, Ding Y (2015) Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs. J Mater Chem C 3(45):11806–11814

    CAS  Google Scholar 

  11. Wang Y, Zhang X, Guo X, Li D, Cui B, Wu K, Yun J, Mao J, Xi L, Zuo Y (2018) Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J Mater Sci 53(18):13081–13089. https://doi.org/10.1007/s10853-018-2540-9

    Article  CAS  Google Scholar 

  12. Zhou Z, Zhang Z, Zhang Q, Yang H, Zhu Y, Wang Y, Chen L (2020) Controllable core-shell BaTiO3@carbon nanoparticle-enabled P(VDF-TrFE) composites: a cost-effective approach to high-performance piezoelectric nanogenerators. ACS Appl Mater Interfaces 12(1):1567–1576

    CAS  Google Scholar 

  13. Karan SK, Bera R, Paria S, Das AK, Maiti S, Maitra A, Khatua BB (2016) An approach to design highly durable piezoelectric nanogenerator based on self-Poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv Energy Mater 6(20):1601016

    Google Scholar 

  14. Bhunia R, Gupta S, Fatma B, Prateek Gupta RK, Garg A (2019) Milli-watt power harvesting from dual triboelectric and piezoelectric effects of multifunctional green and robust reduced graphene oxide/P(VDF-TrFE) composite flexible films. ACS Appl Mater Interfaces 11(41):38177–38189

    CAS  Google Scholar 

  15. Zheng H, Zi Y, He X, Guo H, Lai YC, Wang J, Zhang SL, Wu C, Cheng G, Wang ZL (2018) Concurrent harvesting of ambient energy by hybrid nanogenerators for wearable self-powered systems and active remote sensing. ACS Appl Mater Interfaces 10:14708–14715

    CAS  Google Scholar 

  16. Sun B, Li X, Zhao R, Ji H, Qiu J, Zhang N, He D, Wang C (2018) Electrospun poly(vinylidene fluoride)-zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator. J Mater Sci 54(3):2754–2762. https://doi.org/10.1007/s10853-018-2985-x

    Article  CAS  Google Scholar 

  17. Hajra S, Sahoo S, Das R, Choudhary RNP (2018) Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)TiO3-BaTiO3 electronic system. J Alloy Compd 750:507–514

    CAS  Google Scholar 

  18. Karan SK, Maiti S, Agrawal AK, Das AK, Maitra A, Paria S, Bera A, Bera R, Halder L, Mishra AK, Kim JK, Khatua BB (2019) Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezoelectric/wind/acoustic multi-energy harvester with remarkable power density. Nano Energy 59:169–183

    CAS  Google Scholar 

  19. Li J, Xie B, Xia K, Zhao C, Li Y, Li D, Han J (2018) Facile synthesis and characterization of cross-linked chitosan quaternary ammonium salt membrane for antibacterial coating of piezoelectric sensors. Int J Biol Macromol 120:745–752

    CAS  Google Scholar 

  20. Hajra S, Sahu M, Purohit V, Panigrahi R, Choudhary RNP (2019) Investigation of structural, electrical and magnetic characterization of erbium substituted lead free electronic materials. Mater Res Express 6(9):096319

    CAS  Google Scholar 

  21. Li J, Zhao C, Xia K, Liu X, Li D, Han J (2019) Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification. Appl Surf Sci 463:626–634

    CAS  Google Scholar 

  22. Hajra S, Sahu M, Purohit V, Choudhary RNP (2019) Dielectric, conductivity and ferroelectric properties of lead-free electronic ceramic: 0.6Bi(Fe0.98Ga0.02)O3-0.4BaTiO3. Heliyon 5(5):e01654

    Google Scholar 

  23. Mokhtari F, Foroughi J, Zheng T, Cheng Z, Spinks GM (2019) Triaxial braided piezo fiber energy harvesters for self-powered wearable technologies. J Mater Chem A 7(14):8245–8257

    CAS  Google Scholar 

  24. Hajra S, Sahoo S, Choudhary RNP (2019) Fabrication and electrical characterization of (Bi0.49Na0.49Ba0.02)TiO3-PVDF thin film composites. J Polym Res 26(1):14

    Google Scholar 

  25. Shepelin NA, Glushenkov AM, Lussini VC, Fox PJ, Dicinoski GW, Shapter JG, Ellis AV (2019) New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci 12(4):1143–1176

    CAS  Google Scholar 

  26. Adhikary P, Mandal D (2017) Enhanced electro-active phase in a luminescent P(VDF-HFP)/Zn(2+) flexible composite film for piezoelectric based energy harvesting applications and self-powered UV light detection. Phys Chem Chem Phys 19(27):17789–17798

    CAS  Google Scholar 

  27. Kar E, Bose N, Dutta B, Mukherjee N, Mukherjee S (2019) Ultraviolet- and microwave-protecting, self-cleaning e-skin for efficient energy harvesting and tactile mechanosensing. ACS Appl Mater Interfaces 11(19):17501–17512

    CAS  Google Scholar 

  28. Xu Q, Lou J, Zhang R, Ma B, Bai S, Qin Y (2020) Self-cleaning and self-powered UV sensors for highly reliable outdoor UV detection. ACS Appl Electron Mater 2(6):1628–1634

    CAS  Google Scholar 

  29. Hou J, Inganas O, Friend RH, Gao F (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17:119–128

    CAS  Google Scholar 

  30. Sharma R, Alam F, Sharma AK, Dutta V, Dhawan SK (2015) Role of zinc oxide and carbonaceous nanomaterials in non-fullerene-based polymer bulk heterojunction solar cells for improved cost-to-performance ratio. J Mater Chem A 3(44):22227–22238

    CAS  Google Scholar 

  31. Mori H, Takahashi R, Hyodo K, Nishinaga S, Sawanaka Y, Nishihara Y (2018) Phenanthrodithiophene (PDT)–difluorobenzothiadiazole (DFBT) copolymers: effect on molecular orientation and solar cell performance of alkyl substitution onto a PDT core. Macromolecules 51(4):1357–1369

    CAS  Google Scholar 

  32. Hou J, Inganas O, Friend RH, Gao F (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17(2):119–128

    CAS  Google Scholar 

  33. Liu C, Peng M, Yu A, Liu J, Song M, Zhang Y, Zhai J (2016) Interface engineering on p-CuI/n-ZnO heterojunction for enhancing piezoelectric and piezo-phototronic performance. Nano Energy 26:417–424

    CAS  Google Scholar 

  34. Kim DHDB, Yu JS (2018) High-Performance flexible piezoelectric-assisted triboelectric hybrid nanogenerator via polydimethylsiloxane-encapsulated nanoflower-like ZnO composite films for scavenging energy from daily human activities. ACS Sustainable Chem Eng 6:8525–8535

    CAS  Google Scholar 

  35. Purusothaman Y, Alluri NR, Chandrasekhar A, Venkateswaran V, Kim SJ (2019) Piezophototronic gated optofluidic logic computations empowering intrinsic reconfigurable switches. Nat Commun 10(1):4381

    Google Scholar 

  36. Ji Y, Zhang K, Wang ZL, Yang Y (2019) Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO3 materials for simultaneously scavenging light and vibration energies. Energy Environ Sci 12(4):1231–1240

    CAS  Google Scholar 

  37. Xu C, WangX Wang ZL (2009) Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131:5866–5872

    CAS  Google Scholar 

  38. Wang S, Wang X, Wang ZL, Yang Y (2016) Efficient scavenging of solar and wind energies in a smart city. ACS Nano 10(6):5696–5700

    CAS  Google Scholar 

  39. Silva-Leon J, Cioncolini A, Nabawy MRA, Revell A, Kennaugh A (2019) Simultaneous wind and solar energy harvesting with inverted flags. Appl Energy 239:846–858

    Google Scholar 

  40. Fang Y, Tong J, Zhong Q, Chen Q, Zhou J, Luo Q, Zhou Y, Wang Z, Hu B (2015) Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. Nano Energy 16:301–309

    CAS  Google Scholar 

  41. Dudem B, Ko YH, Leem JW, Lim JH, Yu JS (2016) Hybrid energy cell with hierarchical nano/micro-architectured polymer film to harvest mechanical, solar, and wind energies individually/simultaneously. ACS Appl Mater Interfaces 8:30165–30175

    CAS  Google Scholar 

  42. Ahmed R, Kim Y, Zeeshan Chun W (2019) Development of a tree-shaped hybrid nanogenerator using flexible sheets of photovoltaic and piezoelectric films. Energies 12(2):229

    CAS  Google Scholar 

  43. Yun J, Song C, Lee H, Park H, Jeong YR, Kim JW, Jin SW, Oh SY, Sun L, Zi G, Ha JS (2018) Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 49:644–654

    CAS  Google Scholar 

  44. Li J, Zhao J, Rogers JA (2019) Materials and designs for power supply systems in skin-interfaced electronics. Accounts Chem Res 52:53–62

    CAS  Google Scholar 

  45. Qian X, Zhu ZQ, Sun HX, Ren F, Mu P, Liang W, Chen L, Li A (2016) Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units. ACS Appl Mater Interfaces 8:21063–21069

    CAS  Google Scholar 

  46. Ren F, Wang F, Pan Y, Sun H, Zhu Z, Ma C, Xiao C, Liang W, Chen L, Li A (2018) Flexible and UV resistant films based on thiophene-substituted conjugated microporous polymers bearing alkyl chains: tuning of rigidity into soft. Macromol Mater Eng 303(4):1700619

    Google Scholar 

  47. Thakur P, Kool A, Hoque NA, Bagchi B, Khatun F, Biswas P, Brahma D, Roy S, Banerjee S, Das S (2018) Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 44:456–467

    CAS  Google Scholar 

  48. Su L, Zhao Z, Li H, Wang Y, Kuang S, Cao G, Wang Z, Zhu G (2016) Photoinduced enhancement of a triboelectric nanogenerator based on an organolead halide perovskite. J Mater Chem C 4(43):10395–10399

    CAS  Google Scholar 

  49. Han J, Yang X, Liao L, Zhou G, Wang G, Xu C, Hu W, Debora MER, Song Q (2019) Photoinduced triboelectric polarity reversal and enhancement of a new metal/semiconductor triboelectric nanogenerator. Nano Energy 58:331–337

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51903225), Key Research and Development Projects of Shanxi Province (Grant Numbers 201803D121094 and 201903D121061) and Research Project Supported by Shanxi Scholarship Council of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 618 kb)

Supplementary material 2 (MP4 3979 kb)

Supplementary material 3 (MP4 950 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, J., Fang, Z. et al. Ultraviolet-protecting, flexible and stable photovoltaic-assisted piezoelectric hybrid unit nanogenerator for simultaneously harvesting ultraviolet light and mechanical energies. J Mater Sci 55, 15222–15237 (2020). https://doi.org/10.1007/s10853-020-05078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05078-4

Navigation