Skip to main content
Log in

Mercury Thermoforms and Their Distribution in the Sedimentary Sequence of the Juan De Fuca Ridge

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper addresses the vertical distribution of total mercury and its thermoforms in the Holocene–Upper Pleistocene sedimentary rocks from the Dead Dog active hydrothermal field in the Middle Valley, Juan de Fuca Ridge, Pacific Ocean. Sediment samples were taken from the core of Hole 858B drilled during ODP leg on the top of a sulfide hill, in a zone of ascending hydrothermal fluid, in the vicinity of high-temperature vent with temperature of 276°С. The contents of mercury and its thermoforms were measured by atomic absorption spectrometry (AAS) with thermal atomization. The highest mercury concentrations in the sediments reach 10.3 μg/g. Mercury is present in sediments in the following thermoforms: free mercury (FR), chloride (ChL), physically sorbed (PhS), chemically sorbed (ChS), sulfide (SF), and isomorphic (IS) forms. In the sedimentary section, contrasting concentrations of mercury alternate like a “layer cake” due to its accumulation at geochemical barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. A. Alekseenko and L. P. Alekseenko, Geochemical Barriers (Logos, Moscow, 2003) [in Russian].

  2. L. A. Bannikova, Organic Matter in Hydrothermal Ore Formation (Nauka, Moscow, 1990) [in Russian].

  3. V. L. Barsukov, N. P. Laverov, and A. A. Pek, “Structure of flow of ore-bearing solutions as one of factors determining zoning of hydrothermal deposits,” Geochronology and Problems of Ore Formation, Ed. by V. L. Barsukov (Nauka, Moscow, 1977), pp. 132–145 [in Russian].

  4. E. A. Baskov and S. N. Surikov, Hydrothermal Vents of the Earth (Nedra, Leningrad, 1989) [in Russian].

  5. L. N. Belova, Oxidation Zones of Hydrothermal Uranium Deposits (Nedra, Moscow, 1975) [in Russian].

  6. A. G. Betekhtin, Course of Mineralogy (KDU, Moscow, 2007) [in Russian].

  7. H. Biester and C. Scholz, “Determination of mercury binding forms in contaminated soils: Mercury pyrolysis versus sequential extraction,” Environ. Sci. Technol. No. 31, 233–239 (1997).

    Google Scholar 

  8. N. A. Bogdanov, “Approach to mercury normalization to the content of its thermoforms in soils and bottom sediments,” Gigiena Sanitariya 96 (2), 106–113 (2017).

    Google Scholar 

  9. Yu. A. Bogdanov, A. P. Lisitsyn, A. M. Sagalevich, and E. G. Gurvich, Ocean Floor Hydrothermal Ore Genesis (Nauka, Moscow, 200) [in Russian].

  10. E. E. Davis, and H. Villinger, “Tectonic and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge,” ODP Init. Repts. 139, 9–41 (1992).

    Google Scholar 

  11. E. E. Davis, M. J. Mottl, A. T. Fisher, et al., ODP Init. Repts. 139, (1992).

  12. V. P. Fedorchuk, “Some tendencies in the formation of aureols of ore indicators around mercury deposits,” Geokhimiya, No. 10, 911–919 (1961).

    Google Scholar 

  13. V. P. Fedorchuk, Mercury Geology (Nedra, Moscow, 1983) [in Russian].

    Google Scholar 

  14. V. P. Fedorchuk and E. F. Mintser, Geological Handbook on Mercury, Stibium, and Bismuth (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  15. V. Z. Fursov, “Mercury speciations in rocks, aureoles of deposits and at the sites of anthropogenic pollution,” Ecological-Geochemical Problems of Mercury, Ed. by E. L. Burenkova (IMGRE, Moscow, 2000), pp. 109–125 [in Russian].

  16. V. Z. Fursov, Mercury as Indicator in Geochemical Prospecting of Ore Deposits (Nedra, Moscow, 1977) [in Russian].

  17. V. Z. Fursov and I. I. Stepanov, “On the possibility of determination of mercury speciation in rocks and ores,” Izv. Akad. Nauk KazSSSR. Ser. Geol., No. 2, 90–92 (1967).

  18. G. A. Goleva, Hydrogeochemistry of Ore Elements (Nedra, Moscow, 1977) [in Russian].

    Google Scholar 

  19. V. S. Golubev, Dynamics of Geochemical Processes (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  20. E. V. Ivanter and A. V. Korosov, Principles of Biometry (PGU, Petrozavodsk, 1992) [in Russian].

    Google Scholar 

  21. B. B. Jorgensen, L. X. Zawacki, and H. W. Jannsch, “Thermophilic bacterial sulfate reduction in deep–sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California),” Deep–Sea Res. 37, 695–710 (1990).

    Google Scholar 

  22. M. A. Karasik, S. I. Kirkikilitsa, and L. I. Gerasimova, Atmogeochemical Methods of Prospecting of Ore Deposits (Nedra, Moscow, 1986) [in Russian].

    Google Scholar 

  23. N. S. Kasimov and A. E. Vorob’ev, Geochemical Barriers in the Supergene Zone (MGU, Moscow, 2002) [in Russian].

    Google Scholar 

  24. A. N. Kol’chugin, V. P. Morozov, E. A. Korolev, and A. A. Eskin, “Different types of silicification in the oil-bearing Lower and Middle Carboniferous carbonate sediments: evidence from oil deposits of Tatarstan,” Sedimentary Basins, Sedimentation and Postsedimentation Processes in the Geological Evolution: Proc. 7thAll-Russian Lithological Conference (INGG SO RAN, Novosibirsk, 2013), pp. 42–44 [in Russian].

  25. D. S. Korzhinskii, Theory of Metasomatic Zoning (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  26. R. A. Koski, W. R. Normark, and J. L. Morton, “Massive sulfide deposits on the southern Juan de Fuca Ridge: Results of investigations in the USGS study area, 1980–1983,” Mar. Mining 5 (2), 147–164 (1985).

    Google Scholar 

  27. Ya. Kraicha, Gases in Groundwaters (Nedra, Moscow, 1980) [in Russian].

    Google Scholar 

  28. S. R. Krainov and V. M. Shvets, Principles of Geochemistry of Groundwaters (Nedra, Moscow, 1980) [in Russian].

    Google Scholar 

  29. S. R. Krainov and V. M. Shvets, Hydrogeochemistry (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  30. V. I. Kupenko, “New data on mineralogy of the mercury deposits of the Donetsk Basin,” Dok. Akad. Nauk SSSR 25 (5), 1243–1245 (1980).

    Google Scholar 

  31. V. B. Kurnosov, L. N. Luchsheva and Yu. I. Konovalov, “Mercury in the sedimentary cover and basalts of the basement in the recent hydrothermal activity area, Middle Valley, Juan de Fuca Ridge,” Lithol. Mineral. Resour. 53 (5), 361–379 (2018).

    Google Scholar 

  32. N. P. Laverov, V. L. Barsukov, V. I. Mal’kovsky, and A. A. Pek, “Hydrodynamic conditions of mixing of solutions during formation of cross-cutting ore veins in laminated sequences,” Geol. Rudn. Mestorozhd. 37 (4), 344–357 (1995).

    Google Scholar 

  33. L. N. Luchsheva, Yu. I. Konovalov, and V. B. Kurnosov, “The thermoforms of the mercury in the sedimentary thickness of the area of hydrotermal rudogenesis (Juan de Fuca Ridge),” Sci. Europe 33 (3), 18–22 (2018).

    Google Scholar 

  34. O. V. Lukashev, Geochemical Prospecting Methods (BGU, Minsk, 2007) [in Russian].

    Google Scholar 

  35. N. R. Mash’yamov, “Mercury as a Global Contaminant (2015): International Projects and Funds / earth. s-pbu.ru/netcat_files/userfiles/scientific…Hg_projects– Mashianov.pdf

  36. N. Mashyanov, S. Pogarev, V. Ryzhov, et al., “Mercury thermo–speciation in contaminated soils and sediments,” RMZ–Materials and Geoenvironment 51(3), 1980–1983 (2004).

    Google Scholar 

  37. M. A. Nadporozhskaya, E. I. Fedorov, E. A. Trubitsina, and E. V. Abakumov, “Influence of humic specimens obtained from active sewage ooze on the plant and soil,” Vestn. St. Petersb. Gos. Univ. 3 (3), 114–125 (2012).

    Google Scholar 

  38. Z. B. Namsaraev, V. M. Gorlenko, B. B. Namsaraev, and D. D. Barkhutova, Microbial Communities of Alkaline Hydrothermal Vents (SO RAN, Novosibirsk, 200) [in Russian].

  39. A. A. Nuzhdaev, S. N. Ruzhagov, and I. I. Stepanov, “Mercury as indicator of temperature and geochemical barriers in the modern ore-forming hydrothermal–magmatic systems,” Volcanism and Geodynamics. Proc. 4thAll-Russian Symp. On Volcanology and Paleovolcanology (IViS DVO RAN, Petropavlovsk-Kamchataksii, 2009), Vol. 2, pp. 781–785 [in Russian].

  40. E. N. Ofitserov, G. K. Ryabov, Yu. A. Ubas’kina, A. B. Klimovskii, and E. G. Fetyukhina, “Silica and humic acids: modeling of interactions in soil,” Izv. Samarsk. Nauchn Ts. Ross. Akad. Nauk4 (2), 550–557 (2011).

    Google Scholar 

  41. N. A. Ozerova, Mercury and Endogenous Ore Formation (Nauka, Moscow, 1986) [in Russian]. N. A. Ozerova and S. I. Andreev, Mercury in oceanic hydrothermal formations,” Geology of Oceans and Seas: Proc. 18thInternational School on Marine Geology (GEOS, Moscow, 2009), Vol. 2, 188–192 [in Russian].

  42. N. A. Ozerova, Yu. I. Pikovsky, G. Yu. Butuzova, and S. Karamata, “The mercury potential of the ore and hydrocarbon formations in the conjugare ocean–continent deep-seated fault zones, Geology of Oceans and Seas: Proc. 17thInternational School on Marine Geology (GEOS, Moscow, 2007), pp. 56–58.

    Google Scholar 

  43. A. I. Perelman, Geochemistry and Landscapes (Znanie, Moscow, 1961) [in Russian].

    Google Scholar 

  44. S. N. Rychagov and I. I. Stepanov, “Hydrothermal system of Baransky Volcano, Iturup Island: mercury behavior in the interior,” Vulkanol. Seismol., No. 2, 41–52 (1994).

  45. S. N. Rychagov, A. A. Nuzhdaev, and I. I. Stepanov, “Behavior of mercury in the supergene zone of geothermal deposits, southern Kamchatka,” Geochem. Int. 47(5), 504–512 (2009).

    Google Scholar 

  46. S. N. Rychagov, A. A. Nuzhdaev, I. I. Stepanov, “Mercury as an indicator of modern ore–forming gas–hydrothermal systems, Kamchatka,” Geochem. Int. 52(2), 131–143 (2014).

    Google Scholar 

  47. A. A. Saukov. N. Kh. Aidin’yan, and N. A. Ozerova, Essays on Mercury Geochemistry (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  48. N. D. Shikina, M. V. Borisov, and N. A. Ozerova, “Speciations of mercury in acid chloride solutions: evidence from the present-day hydrothermal vents of the crater of Mutnovsky Volcano,” Geokhimiya, No. 12, 1786–1789 (1993).

    Google Scholar 

  49. S. L. Shvartsev, General Hydrogeology (Nedra, Moscow, 1996) [in Russian].

    Google Scholar 

  50. S. S. Smirnov, Oxidation Zone of Sulfide Deposits (AN SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  51. V. I. Smirnov, Geology of Mienral Resources (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  52. G. A. Solomin and S. R. Krainov, “Alkali constituents of alkaline natural water and sewage: geochemistry of neutralization by acidic and near-neutral groundwaters,” Geochem. Int. 36 (2), 183–201 (1998).

    Google Scholar 

  53. D. S. Stakes and J. M. Franklin, “Petrology of igneous rocks at Middle Valley, Juan de Fuca Ridge,” ODP Sci. Results 139, 79–102 (1994).

    Google Scholar 

  54. I. I. Stepanov, Yu. I. Stakheev, I. F. Myasnikov, and A. Ya. Sandomirsky, “New data on mercury speciation in the rocks and minerals,” Dokl. Akad. Nauk SSSR 266 (4), 1007–1011 (1982).

    Google Scholar 

  55. Yu. G. Tatsy, “Method of thermosorption as method for determination of soild-phase mercury forms,” Mercury in Biosphere: Ecological–Geochemical Aspects. Proc. Intern. Symp. (GEOKHI RAN, Moscow, 2010), pp. 31–37 [in Russian].

  56. V. L. Tauson, “New methods of study of speciation of ore elements in mineral matter,” Geochemical Processes and Mineral Resources, Vestn. GeoIGU, No. 2 117–128 (2000).

    Google Scholar 

  57. V. L. Tauson, I. Yu. Parkhomenko, D. N. Babkin, V. I. Men’shikov, and E. E. Lustenberg, “Cadmium and mercury uptake by galena crystals under hydrothermal growth: A spectroscopic and element thermo–release atomic absorption study,” Eur. J. Mineral. 17 (4), 599–610 (2005).

    Google Scholar 

  58. V. L. Tauson, V. S. Zubkov, and V. I. Men’shikov, “Mercury speciations in the minerals of mercury ore formation,” Geol. Geofiz. 35 (1), 54–69 (1994).

    Google Scholar 

  59. Yu. P. Trukhin, I. I. Stepanov, and R. A. Shuvalov, Mercury in the Modern Hydrothermal Processes (Nauka, Moscow, 1986) [in Russian].

  60. A. V. Tudupov, D. D. Barkhutova, Z. B. Namsaraev, and B. B. Namsaraev, “Bacterial synthesis of hydrogen sulphide in nitrogen hydrothermal vents of the Baikal region,” Vestn. Buryatsk. Gos. Univ., No. 3, 129–134 (2011).

  61. A. A. Volokh and E. P. Yanin, “Application of thermal atomic absorption for estimating anthropogenic mercury anomalies in rivers,” Applied Geochemistry. Volume 4. Analytical Studies, Ed. by E. K. Burenkova, (IMGRE, Moscow, 2003), pp. 279–288 [in Russian].

  62. C. C. Windmöller, R.-D. Wiken, and W. F. Jardim, “Mercury speciation in contaminated soils by thermal release analysis,” Water Air Soil Pollut. 89(3–4), 399–416 (1996).

    Google Scholar 

  63. G. A. Zavarzin, Lithotrophic Organisms (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  64. Yu. D. Zherebtsov, “Mercury thermoforms in the lithochemical aureoles of the gold–silver deposits and their prospecting significance,” Geokhimiya, No. 1, 75–87 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Luchsheva.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchsheva, L.N., Kurnosov, V.B. & Konovalov, Y.I. Mercury Thermoforms and Their Distribution in the Sedimentary Sequence of the Juan De Fuca Ridge. Geochem. Int. 58, 922–932 (2020). https://doi.org/10.1134/S0016702920060051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920060051

Keywords:

Navigation