Skip to main content
Log in

Thermal and Thermochemical Study of Blödite (Astrakhanite)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The natural hydrous sodium−magnesium sulfate blödite (astrakhanite) Na2Mg(SO4)2 · 4H2O from sediments of saline Lake Bai Shagyr (Russia) is studied. The stages of its decomposition on heating are distinguished using thermal analysis, X-ray diffraction, IR and Raman spectroscopy. The enthalpy of formation of blödite from elements (\({{\Delta }_{f}}H_{{el}}^{0}\) (298.15 K) = –3845 ± 13 kJ/mol) is determined on a Tian-Calvet microcalorimeter using high-temperature melt solution calorimetry. The values of standard entropy and Gibbs energy of mineral formation are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Balić-Žunić, R. Birkedal, A. Katerinopoulou, and P. Comodi, “Dehydration of blödite, Na2Mg(SO4)2(H2O)4, and leonite, K2Mg(SO4)2(H2O)4, Eur. J. Mineral. 28, 33–42 (2016).

    Article  Google Scholar 

  2. S. K. Bhattacharia, N. Hossain, and C.-C. Chen, “Thermodynamic modeling of aqueous Na+−K+−Cl\({\text{SO}}_{4}^{{2 - }}\) quaternary system with electrolyte NRTL model,” Fluid Phase Equil. 403, 1–9 (2015a).

    Article  Google Scholar 

  3. S. K. Bhattacharia, S. Tanveer, N. Hossain, and C.-C. Chen, “Thermodynamic modeling of aqueous Na+−K+–Mg2+\({\text{SO}}_{4}^{{2 - }}\) quaternary system,” Fluid Phase Equilib. 404, 141–149 (2015b).

    Article  Google Scholar 

  4. Ó. Cabestrero, P. del Buey, and M. E. Sanz-Montero, “Biosedimentary and geochemical constraints on the precipitation of mineral crusts in shallow sulphate lakes,” Sediment. Geol. 366, 32–46 (2018).

    Article  Google Scholar 

  5. S. J. Chipera and D. T. Vaniman, “Experimental stability of magnesium sulfate hydrates that may be present on Mars,” Geochim. Cosmochim. Acta 71, 241–250 (2007).

    Article  Google Scholar 

  6. N. V. Chukanov, Infrared Spectra of Mineral Species: Extended Library (Springer–Verlag GmbH, Dordrecht–Heidelberg–New York–London, 2014).

    Book  Google Scholar 

  7. N. V. Chukanov and A. D. Chervonnyi, Infrared Spectroscopy of Minerals and Related Compounds (Springer Cham, Heidelberg–New York–Dordrecht–London, 2016).

    Book  Google Scholar 

  8. P. Comodi, S. Nazzareni, T. Balić-Žunić, A. Zuccini, and M. Hanfland, “The high–pressure behavior of bloedite: A synchrotron single X-ray diffraction study,” Am. Mineral. 99, 511–518 (2014).

    Article  Google Scholar 

  9. P. Comodi, V. Stagno, A. Zucchini, Y. Fei, and V. Prakapenka, “The compression behavior of blödite at low and high temperature up to ~10 GPa: Implications for the stability of hydrous sulfates on icy planetary bodies,” Icarus 285, 137–144 (2017).

    Article  Google Scholar 

  10. A. Gutierrez, L. Miró, A. Gil, J. Rodríguez-Aseguinolaza, C. Barreneche, N. Calvet, X. Py, A. I. Fernández, M. Grágeda, S. Ushak, and L. F. Cabeza, “Advances in the valorization of waste and by–product materials as thermal energy storage (TES) materials,” Renew. Sust. Energy Rev. 59, 763–783 (2016).

    Article  Google Scholar 

  11. A. Gutierrez, S. Ushak, V. Mamani, P. Vargas, C. Barreneche, L. F. Cabeza, and M. Grágeda, “Characterization of wastes based on inorganic double salt hydrates as potential thermal energy storage materials,” Sol. Energy Mater. Sol. Cells 170, 149–159 (2017).

    Article  Google Scholar 

  12. C. E. Harvie, N. Møller, and J. H. Weare, “The prediction of mineral solubilities in natural water: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25°C,” Geochim. Cosmochim. Acta 48, 723–751 (1984).

    Article  Google Scholar 

  13. F. C. Hawthorne, “Refinement of the crystal structure of bloedite: structural similarities in the [VIM(IVTΦ4)2Φn] finite–cluster minerals,” Can. Mineral. 23, 669–674 (1985).

    Google Scholar 

  14. F. C. Hawthorne, S. V. Krivovichev, and P. C. Burns, “The crystal chemistry of sulfate minerals,” Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, Ed. by C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, Rev. Mineral. Geochem. 40 (1), 1–112 (2000).

  15. ICDD. The International Centre for Diffraction Data (2013). http: //www.icdd.com.

  16. P. V. Jentzsch, B. Kampe, P. Rösch, and J. Popp, “Raman spectroscopic study of crystallization from solutions containing MgSO4 and Na2SO4: Raman spectra of double salts,” J. Phys. Chem. A 115 (22), 5540–5546 (2011).

    Article  Google Scholar 

  17. I. A. Kiseleva and L. P. Ogorodova, “Application of high-temperature dissolution calorimetry for determination of enthalpy of formation of hydroxyl-bearing minerals by the example of talc and tremolite,” Geokhimiya, No. 12, 1745–1755 (1983).

    Google Scholar 

  18. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the system CaO–MgO–SiO2,“ Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  19. I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites – heulandite and stilbite,” Am. Mineral. 86, 448–455 (2001).

    Article  Google Scholar 

  20. A. R. Kotel’nikov, Yu. K. Kabalov, T. N. Zezyulya, L. V. Melchakova, and L. P. Ogorodova, “Experimental study of celestine–barite solid solution,” Geochem. Int. 38 (12), 1181–1187(2000).

    Google Scholar 

  21. M. D. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate–bearing minerals,” Am. Mineral. 92, 1–18 (2007).

    Article  Google Scholar 

  22. N. Lindström, T. Talreja, K. Linnow, A. Stahlbuhk, and M. Steiger, “Crystallization behavior of Na2SO4–MgS-O4 salt mixtures in sandstone and comparison to single salt behavior,” Appl. Geochem. 69, 50–70 (2016).

    Article  Google Scholar 

  23. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, Handbook of Thermodynamci Data (for Geologists) (Atomizdat, Moscow, 1971) [in Russian].

  24. V. B. Naumov, V. S. Kamenetsky, R. R. Tomas, N. N. Kononkova, and B. N. Ryzhenko, “Inclusions of silicate and sulphate melts in the chrome–diopside of the Inaglinskoye deposit (Yakutia, Russia),” Geochem. Int. 46 (6), 554–564 (2008).

    Article  Google Scholar 

  25. A. Navrotsky and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295 (1976).

    Article  Google Scholar 

  26. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  27. L. P. Ogorodova, I. A. Kiseleva, L. V. Mel’chakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric determination of the enthalpy of formation for pyrophyllite,” Russ. J. Phys. Chem. A85 (9), 1492–1494 (2011).

    Google Scholar 

  28. I. V. Pekov, M. E. Zelenski, N. V. Zubkova, D. A. Ksenofontov, Y. K. Kabalov, N. V. Chukanov, V. O. Yapaskurt, A. E. Zadov, and D. Y. Pushcharovsky, “Krasheninnikovite, KNa2CaMg(SO4)3F, a new mineral from the Tolbachik volcano, Kamchatka, Russia,” Am. Mineral. 97, 1788–1795 (2012).

    Article  Google Scholar 

  29. R. C. Peterson and R. Wang, “Crystal molds on Mars: melting of a possible new mineral species to create Martian chaotic terrain,” Geology 34, 957–960 (2006).

    Article  Google Scholar 

  30. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 2131, (1979).

  31. RRUFF project. Database of Raman spectroscopy, X-Ray Diffraction and Chemistry of Minerals, http://www. rruff.info/

  32. N. M. Rumanova and G. I. Malitskaya, “Refinement of the astrakhanite structure by a method of phase suspended projections,” Kristallografiya 4(4), 523–525 (1959).

    Google Scholar 

  33. D. Stoilova and M. Wildner, “Blödite–type compounds Na2Me(SO4)2 ⋅ 4H2O (Me = Mg, Co, Ni, Zn): crystal structures and hydrogen bonding systems,” J. Mol. Struct. 706, 57–63 (2004).

    Article  Google Scholar 

  34. Thermodynamic Properties of Individual Matters (Nauka, Moscow, 1982), Vol. 4, book 2.

  35. S. Ushak, A. Gutierrez, E. Flores, H. Galleguillos, and M. Grageda, “Development of thermal energy Storage materials from waste-process salts,” Energy Procedia 57, 627–632 (2014).

    Article  Google Scholar 

  36. C. Vizcayno and M. T. Garcia-Gonzalez, “Na2Mg(SO4)2 ⋅ 4H2O, the Mg end–member of the bloedite–type of mineral,” Acta Crystallogr. C 55, 8–11 (1999).

    Article  Google Scholar 

  37. G. Wollmann and W. Voigt, “Solid–liquid phase equilibria in the system K2SO4–MgSO4–H2O at 318 K,” Fluid Phase Equilib. 291, 151–153 (2010).

    Article  Google Scholar 

  38. R. W. G. Wyckoff, Crystal Structures, 2nd Ed. (Interscience, New York, 1963), Vol. 3.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. mk 18-29-12128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Melchakova, L.V., Gritsenko, Y.D. et al. Thermal and Thermochemical Study of Blödite (Astrakhanite). Geochem. Int. 58, 914–921 (2020). https://doi.org/10.1134/S0016702920070083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920070083

Keywords:

Navigation