Skip to main content
Log in

Analysis of Chemical Composition of Gases from Rock Samples by Pulsed Discharge Chromatography Combined Mass Spectrometry

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Understanding the chemical composition of gases trapped in rocks is important in a wide variety of earth science studies and gases are often extracted from rock samples and analyzed. Gas chromatography (GC) and mass spectrometry (MS) are the most frequently used analytical techniques for measuring gases extracted from rock samples, but these techniques have rarely been coupled except for gas chromatography-mass spectrometry (GC-MS) or Continuous flow isotope ratio mass spectrometry (CF-IRMS). A thermal conductivity detector (TCD) is most frequently used in GC because of its ability to detect all gases, but has limited sensitivity and thus cannot accurately detect trace gases in some rock samples. To resolve this issue, we built a new device that tests gases extracted from rock samples by GC and MS together, and employs a pulsed discharge detector (PDD) with GC analyses rather than a TCD because PDD is capable of detecting most gases and exhibits higher sensitivity than that of TCD. In this device, a rock sample can be heated or crushed in vacuum to release gases. A diaphragm gauge is then used to measure the pressure of the gases released from the rock samples. Four kinds of samples were tested using this new device: serpentinized peridotites from Inner Mongolia, volcanic rocks from Wudalianchi, shale rocks from Sichuan basin and reservoir rocks from Songliao basin. The chemical contents of H2, CH4, H2O, CO, N2, C2H4, C2H6, O2, H2S, Ar, CO2, C3H8, COS and SO2 could be measured simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. L. S. Armstrong, M. M. Hirschmann, B. D. Stanley, E. G. Falksen, S. D. Jacobsen, “Speciation and solubility of reduced C–O–H–N volatiles in mafic melt: Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets,” Geochim. Cosmochim Acta 171, 283–302 (2015).

    Article  Google Scholar 

  2. N. J. F. Blamey, “Composition and evolution of crustal, geothermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis,” J. Geochem. Explor. 116–117, 17–27 (2012).

    Article  Google Scholar 

  3. A. I. Buikin, A. I. Kamaleeva, and N. A. Migdisova, “Prospects of the method of stepwise crushing as a source of information on the fluid phase of rocks and minerals,” Petrology 24 (3), 303–313 (2016).

    Article  Google Scholar 

  4. Clay, P. L. H. Busemann, and S. C. Sherlock, “40Ar/39Ar ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland,” Chem. Geol. 403, 99–110 (2015).

    Article  Google Scholar 

  5. A. Colin, P. Burnard, and B. Marty. “Mechanisms of magma degassing at mid–oceanic ridges and the local volatile composition (4He–40Ar*–CO2) of the mantle by laser ablation analysis of individual MORB vesicles,” Earth Planet. Sci. Lett. 361, 183–194 (2013).

    Article  Google Scholar 

  6. Doucet, L. S. A. H. Peslier, D. A. Ionov, A. D. Brandon, A. V. Golovin, A. G. Goncharov, and I. V. Ashchepkov, “High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths,” Geochim. Cosmochim. Acta 137, 159–187 (2014).

    Article  Google Scholar 

  7. Y. V. Dublyansky, “Design of two crushing devices for release of the fluid inclusion volatiles,” Central Eur. J. Geosci. 4 (2), 219–224 (2012).

    Google Scholar 

  8. Esposito, R. J. Hunter, J. D. Schiffbauer, and J. R. Bodnar, “An assessment of the reliability of melt inclusions as recorders of the pre–eruptive volatile content of magmas,” Am. Mineral. 99 (5–6), 976–998 (2014).

    Article  Google Scholar 

  9. R. Esposito, H. M. Lamadrid, D. Redi, et al., “Detection of liquid H2O in vapor bubbles in reheated melt inclusions: Implications for magmatic fluid composition and volatile budgets of magmas?,” Am. Mineral. 101, 1691–1695 (2016).

    Article  Google Scholar 

  10. T. P. Fischer and B. Marty, “Volatile abundances in the sub–arc mantle: insights from volcanic and hydrothermal gas discharges,” J. Volcanol. Geotherm. Res. 140 (1/3), 205–216 (2005).

    Article  Google Scholar 

  11. D. S. Forsyth, “Pulsed discharge detector: theory and applications,” J. Chromatogr. A 1050, 63–68 (2004).

    Article  Google Scholar 

  12. M. L. Frezzotti, F. Tecce, and A. Casagli, “Raman spectroscopy for fluid inclusion analysis,” J. Geochem. Explo-r. 112, 1–20 (2012).

    Article  Google Scholar 

  13. S. A. Halldórsson, D. R. Hilton, P. H. Barry E. Füri, and K. Grönvold, “Recycling of crustal material by the Iceland mantle plume: new evidence from nitrogen elemental and isotope systematics of subglacial basalts,” Geochim. Cosmochim. Acta 176, 206–226 (2016).

    Article  Google Scholar 

  14. J. M. Huizenga, “Thermodynamic modelling of C–O–H fluids,” Lithos 55, 101–114 (2001).

    Article  Google Scholar 

  15. F. Klein, W. Bach, and T. M. McCollom, “Compositional controls on hydrogen generation during serpentinization of ultramafic rocks,” Lithos 178, 55–69 (2013).

    Article  Google Scholar 

  16. T. Kuritani, E. Ohtani, J. I. Kimura, “Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation,” Nature Geosci. 4, 713–716 (2011).

    Article  Google Scholar 

  17. L. W. Li, L. J. Guo, Y. Q. Xia, and J. C. Tuo, “Development of an automatic gas sampler for trace analysis by mass spectrometer. Modern Scientific Instruments,” No. 6, 85–89 (2016) (in Chinese with English abstract).

  18. L. W. Li, Y. Liu, X. B. Wang, M. J. Zhang, C. H. Cao, L. T. Xing, Z. P. Li, “Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples,” Rock Mineral Anal. 36 (3), 222–230 (2017) (In Chinese with English abstract).

    Google Scholar 

  19. G. Liu, X. B. Wang, and L. W. Li, “Chemical composition of gas from mantle xenoliths in alkali–basalt from Damaping, Hebei,” Chin. Sci. Bull. 42 (6), 470–472 (1997).

    Article  Google Scholar 

  20. X. Liu and J. J. Lang, “Discovery of volcanic debris–avalanche deposits in Laohei and Huoshao volcanoes,Wudalianchi world geopark, and ascertaining the volcanoes' history and eruptive model again,” Geol. Rev. 57 (5), 650–658 (2011) (in Chinese with English abstract).

    Google Scholar 

  21. B. Marty, and F. Humbert, “Nitrogen and argon isotopes in oceanic basalts,” Earth Planet. Sci. Lett. 152, 101–112 (1997).

    Article  Google Scholar 

  22. G. Menard, S. Moune, I. Vlastélic, F. Aguilera, S. Valade, M. Bontemps, and R. González, “Gas and aerosol emissions from Lascar volcano (Northern Chile): Insights into the origin of gases and their links with the volcanic activity,” J. Volcanol. Geotherm. Res. 287, 51–67 (2014).

    Article  Google Scholar 

  23. J. K. Mi, K. He, S. Z. Tao, C. Yang, and M. M. Sun, “Geochemical comparison between the gas in bulk fluid inclusions and reservoir gas produced in Paleozoic formation, Ordos Basin, China,” J. Geochem. Explor. 171, 133–140 (2016).

    Article  Google Scholar 

  24. O. F. Mironova, “Volatile components of natural fluids evidence from inclusions in minerals methods and results,” Geochem. Int. 48 (1), 83–90 (2010).

    Article  Google Scholar 

  25. I. Mulder, S. G. Huber, T. Krause, C. Zetzsch, K. Kotte, S. Dultz, and H. F. Schöler, “A new purge and trap headspace technique to analyze low volatile compounds from fluid inclusions of rocks and minerals,” Chem. Geol. 358, 148–155 (2013).

    Article  Google Scholar 

  26. D. G. Pearson, F. E. Brenker, F Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, and L.Vincze, “Hydrous mantle transition zone indicated by ringwoodite included within diamond,” Nature 507, 221–224 (2014).

    Article  Google Scholar 

  27. J. Potter and F. J. Longstaffe, “A gas–chromatograph, continuous flow–isotope ratio mass spectrometry method for δ13C and δD measurement of complex fluid inclusion volatiles: Examples from the Khibina alkaline igneous complex, northwest Russia and the south Wales coalfields,” Chem. Geol. 244, 186–201 (2007).

    Article  Google Scholar 

  28. M. Queißer, M. R. Burton, F. Arzilli, A. Chiarugi, G. I. Marliyani, F. Anggara, and A. Harijoko, “CO2 flux from Javanese mud volcanism,” J. Geophys. Res.: Solid Earth 122, 4191–4207 (2017).

    Article  Google Scholar 

  29. S. Salvi, and A. E. Williams–Jones, “Bulk analysis of volatiles in fluid inclusions,” In Fluid Inclusions: Analysis and Interpretation, 1rst Ed. (Publisher: Mineralogical Association of Canada, 2003), pp. 10–1–10–30.

  30. A. G. Sokol, Y. N. Palyanov, A. A. Tomilenko, T. A. Bul’bak, and G. A. Palyanova, “Carbon and nitrogen speciation in nitrogen–rich C–O–H–N fluids at 5.5–7.8GPa,” Earth Planet. Sci. Lett. 460, 234–243 (2017).

    Article  Google Scholar 

  31. Q. Y. Tang, M. J. Zhang, C. S. Li, M. Yu, and L. W. Li, “The chemical compositions and abundances of volatiles in the Siberian large igneous province: constraints on magmatic CO2 and SO2 emissions into the atmosphere,” Chem. Geol. 339, 84–91 (2013).

    Article  Google Scholar 

  32. T. Toki, D. Iwata, U. Tsunogai, D. D. Komatsu, Y. Sano, N. Takahata, H. Hamasaki, and J. Ishibashi, “Formation of gas discharging from Taketomi submarine hot spring off Ishigaki Island in the southern Ryukyu Islands, Japan,” J. Volcanol. Geotherm. Res. 330, 24–35 (2017).

    Article  Google Scholar 

  33. W. G. Wang, M. Wang, S. F. Lu, S. M. Chen, M. Zheng, and X. Z. Wu, “Basin modelling of gas migration and accumulation in volcanic reservoirs in the Xujiaweizi Fault–depression, Songliao Basin,” Arab. J. Geosci. 9 (166), 1–24 (2016).

    Article  Google Scholar 

  34. X. B. Wang, Z. Y. Ouyang, S. G. Zhuo, et al., “Serpentinization, abiogenic organic compounds, and deep life,” Science China (Earth Sci.) 57 (05), 878–887 (2014).

    Article  Google Scholar 

  35. X. B. Wang, S. G. Zhou, and M. F. Zhang, Oxidation–reduction characteristics of the serpentinized peridotite. Bulletin of Mineralogy, “Petrol. Geochem,” 35 (2), 231–238 (2016) (in Chinese with English abstract).

    Google Scholar 

  36. M. J. Zhang, P. Q. Hu, Y. L. Niu, and S. G. Su, “Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub–continental lithospheric mantle beneath eastern China,” Lithos 96, 55–66 (2007).

    Article  Google Scholar 

  37. C. Zhang and Z. H. Duan, “A model for C–O–H fluid in the Earth’s mantle,” Geochim. Cosmochim. Acta 73, 2089–2102 (2009).

    Article  Google Scholar 

  38. C. Zhang and Z. H. Duan, “GFluid: An Excel spread sheet for investigating C–O–H fluid composition under high temperatures and pressures,” Comp. Geosci. 36, 569–572 (2010).

    Article  Google Scholar 

  39. M. F. Zhang, S. G. Zhuo, J. C. Tuo, C. J. Wu, L. N. Sun, Y. Liu, Z. P. Li, L. W. Li, H. X. Chi, and X. B. Wang, “The gas composition and genesis of the serpentinized peridotite in the Wenduermiao area, inner Mongolia, China,” Bull. Mineral. Petrol. Geochem. 35 (2), 255–263 (2016) (in Chinese with English abstract).

    Google Scholar 

  40. M. L. Zhang, Z. F. Guo, L. H. Zhang, Y. T. Sun, and Z. H. Cheng, “Geochemical constraints on origin of hydrothermal volatiles from southern Tibet and the Himalayas: understanding the degassing systems in the India–Asia continental subduction zone,” Chem. Geol. 469, 19–33 (2017).

    Article  Google Scholar 

  41. T. W. Zhang, R. S. Yang, K. L. Milliken, S. C. Ruppel, R. J. Pottorf, and X. Sun, “Chemical and isotopic composition of gases released by crush methods from organic rich mudrocks,” Org. Geochem. 73, 16–28 (2014).

    Article  Google Scholar 

  42. G. D. Zheng, S. Xu, S. Y. Liang, P. L. Shi, and J. Zhao, “Gas emission from the Qingzhu River after the 2008 Wenchuan Earthquake, Southwest China,” Chem. Geol. 339, 187–193 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank О. F. Mironova, D.t.n. V. S. Sevastyanov and an anonymous reviewer for their reviews and constructive suggestions. This study was supported financially by NSF of China (no. 41 473 062) and the Key Laboratory Project of Gansu Province (Grant no. 1309RTSA041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liwu Li, Liu, Y., Cao, C. et al. Analysis of Chemical Composition of Gases from Rock Samples by Pulsed Discharge Chromatography Combined Mass Spectrometry. Geochem. Int. 58, 968–979 (2020). https://doi.org/10.1134/S0016702920080078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920080078

Keywords:

Navigation