Skip to main content
Log in

French condiment mustard resistance against Leptosphaeria maculans relies on genes Rlm5 and Rlm6, calling for caution in the deployment of Rlm6 in oilseed rape crops

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Breeding varieties for increased disease resistance is a major means to control epidemics. However, the deployment of resistance genes through space and time drives the genetic composition of the pathogen population, directionally altering pathotype frequencies. In France, Leptosphaeria maculans causes stem canker on Brassica napus oilseed rape crops but not on B. juncea condiment mustard. Prior to the deployment of winter B. napus varieties with Rlm6 resistance gene introduced from B. juncea, the aim of our study was to investigate if this deployment could impact disease control in condiment mustard. We assessed the presence of resistance genes against the disease in a set of current French B. juncea varieties and breeding lines with a set of five differential L. maculans isolates carrying know Avr/avr genes. Rlm6 was detected in all 12 condiment mustard varieties. Rlm5 was also detected in eight varieties. No additional resistance genes were detected with the set of isolates used. Because the frequency of isolates virulent on Rlm6 is very low in France, these results indicate that Rlm6 gene is a major component of disease control in the French B. juncea mustards tested. Using Rlm6 in oilseed rape varieties will very likely induce an increase in frequency of Rlm6 virulent isolates. This raises the acute concern of a wise deployment of oilseed rape around the condiment mustard growing area. Scientific knowledge on adaptation dynamics, spatial segregation of crops and cooperation between actors is currently available in order to mitigate the risk and advert negative consequences of the introduction of Rlm6 resistance gene in oilseed rape varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Balesdent, M. H., Attard, A., Kühn, M. L., & Rouxel, T. (2002). New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology, 92, 1122–1133.

    Article  CAS  Google Scholar 

  • Balesdent, M. H., Barbetti, M. J., Li, H., Sivasithamparam, K., Gout, L., & Rouxel, T. (2005). Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology, 95, 1061–1071.

    Article  CAS  Google Scholar 

  • Balesdent, M. H., Louvard, K., Pinochet, X., & Rouxel, T. (2006). A large-scale survey of races of Leptosphaeria maculans occurring on oilseed rape in France. European Journal of Plant Pathology, 114, 53–65.

    Article  Google Scholar 

  • Bousset, L., Jumel, S., Garreta, V., Picault, H., & Soubeyrand, S. (2015). Transmission of Leptosphaeria maculans from a cropping season to the following one. Annals of Applied Biology, 166, 530–543.

    Article  Google Scholar 

  • Bousset, L., Sprague, S. J., Thrall, P. H., & Barrett, L. G. (2018). Spatio-temporal connectivity and host resistance influence evolutionary and epidemiological dynamics of the canola pathogen Leptosphaeria maculans. Evolutionary Applications, 11, 1354–1370.

    Article  CAS  Google Scholar 

  • Bousset, L., Ermel, M., & Delourme, R. (2020). A Leptosphaeria maculans set of isolates characterised on all available differentials and used as control to identify virulence frequencies in a current French population. BioRixv. https://doi.org/10.1101/2020.01.09.900167.

  • Brun, H., Chèvre, A. M., Fitt, B. D. L., Powers, S., Besnard, A. L., Ermel, M., Huteau, V., Marquer, B., Eber, F., Renard, M., & Andrivon, D. (2010). Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist, 185, 285–299.

    Article  Google Scholar 

  • Chèvre, A. M., Barret, P., Eber, F., Dupuy, P., Brun, H., Tanguy, X., & Renard, M. (1997). Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theoretical and Applied Genetics, 95, 1104–1111.

    Article  Google Scholar 

  • Chèvre, A. M., Brun, H., Eber, F., Letanneur, J. C., Vallée, P., Ermel, M., Glais, I., Li, H., Sivasithamparam, K., & Barbetti, M. J. (2008). Stabilization of resistance to Leptosphaeria maculans in Brassica napusB. juncea recombinant lines and its introgression into spring-type Brassica napus. Plant Disease, 92, 1208–1214.

    Article  Google Scholar 

  • Daverdin, G., Rouxel, T., Gout, L., Aubertot, J. N., Fudal, I., Meyer, M., Parlange, F., Carpezat, J., & Balesdent, M. H. (2012). Genome structure and reproductive behaviour influence the evolutionary potential of a fungal pathogen. PLoS Pathogens, 8, e1003020.

    Article  CAS  Google Scholar 

  • Delourme, R., Pilet-Nayel, M. L., Archipiano, M., Horvais, R., Tanguy, X., Rouxel, T., Brun, H., Renard, M., & Balesdent, M. H. (2004). A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology, 94, 578–583.

    Article  CAS  Google Scholar 

  • Delourme, R., Brun, H., Ermel, M., Lucas, M. O., Vallee, P., Domin, C., Walton, G., Li, H., Sivasithamparam, K., & Barbetti, M. J. (2008). Expression of resistance to Leptosphaeria maculans in Brassica napus double haploid lines in France and Australia is influenced by location. Annals of Applied Biology, 153, 259–269.

    Google Scholar 

  • Delourme, R., Bousset, L., Ermel, E., Duffé, P., Besnard, A. L., Marquer, B., Fudal, I., Linglin, J., Chadœuf, J., & Brun, H. (2014). Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infection, Genetics and Evolution, 27, 490–499.

    Article  CAS  Google Scholar 

  • Elliott, V. L., Norton, R. M., Khangura, R. K., Salisbury, P. A., & Marcroft, S. J. (2015). Incidence and severity of blackleg caused by Leptosphaeria spp.in juncea canola (Brassica juncea L.) in Australia. Australasian Plant Pathology, 44, 149–159.

    Article  Google Scholar 

  • Hannachi, M., & Coléno, F. C. (2015). The virtues of the vice of cooperation between rival firms : A simulation model to evaluate the performance of coopetition strategy in the grain merchant industry. Journal of Management and Strategy, 6, 62–75.

    Article  Google Scholar 

  • Hannachi, M., Berthet, B., & Coléno, F. C. (2017). La transition vers une gestion durable des maladies à l’échelle du paysage. Quels apports pour les sciences de gestion et la transdisciplinarité. In : Petit S. et al, eds. Paysage, biodiversité fonctionnelle et santé des cultures. Versailles, France : QUAE editions, in press.

  • Liban, S. H., Cross, D. J., Kutcher, H. R., Peng, G., & Fernando, W. G. D. (2016). Race structure and frequency of avirulence genes in the western Canadian Leptosphaeria maculans pathogen population, the causal agent of blackleg in brassica species. Plant Pathology, 65, 1161–1169.

    Article  CAS  Google Scholar 

  • Marcroft, S. J., Sprague, S. J., Pymer, S. J., Salisbury, P. A., & Howlett, B. J. (2004). Crop isolation, not extended rotation length, reduces blackleg (Leptosphaeria maculans) severity of canola (Brassica napus) in South-Eastern Australia. Australian Journal of Experimental Agriculture, 44, 601–606.

    Article  Google Scholar 

  • Marcroft, S. J., Van de Wouw, A. P., Salisbury, P. A., Potter, T. D., & Howlett, B. J. (2012). Rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes decreases disease severity. Plant Pathology, 61, 934–944.

    Article  CAS  Google Scholar 

  • Mendes-Pereira, E., Balesdent, M. H., Brun, H., & Rouxel, T. (2003). Molecular phylogeny of the Leptosphaeria maculans-L. biglobosa species complex. Mycological Research, 107, 1287–1304.

    Article  CAS  Google Scholar 

  • Raman, H., Raman, R., & Larkan, N. (2013). Genetic dissection of blackleg resistance loci in rapeseed (Brassica napus L.) in: Andersen SB, ed. Plant Breeding from Laboratories to Fields. Rijeka, Croatia: InTech, 85–120.

  • Van de Wouw, A. P., Marcroft, S. J., Ware, A., Lindbeck, K., Khangura, R., & Howlett, B. J. (2014). Breakdown of resistance to the fungal disease, blackleg, is averted in commercial canola (Brassica napus) crops in Australia. Field Crops Research, 166, 144–151.

    Article  Google Scholar 

  • Van de Wouw, A. P., Howlett, B. J., & Idnurm, A. (2017). Changes in allele frequencies of avirulence genes in the blackleg fungus, Leptosphaeria maculans, over two decades in Australia. Crop and Pasture Science, 69, 20–29.

Download references

Acknowledgements

We thank Claude Domin for technical assistance, Thierry Guinet (Agrosup Dijon) for the condiment mustard seeds, BraCySol for oilseed rape seeds, Mourad Hannachi for fruitful discussions and INRA for financial support. We thank Mylène Balesdent for L. maculans v34.4.4 isolate and Randy Kutcher for L. maculans 05-30 isolate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bousset.

Ethics declarations

Conflict of interest

All authors declare the absence of conflicts of interest. All work conforms to the legal requirements of the country in which it was carried out.

Electronic supplementary material

ESM 1

(DOCX 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousset, L., Ermel, M. & Delourme, R. French condiment mustard resistance against Leptosphaeria maculans relies on genes Rlm5 and Rlm6, calling for caution in the deployment of Rlm6 in oilseed rape crops. Eur J Plant Pathol 158, 799–803 (2020). https://doi.org/10.1007/s10658-020-02099-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02099-2

Keywords

Navigation