Skip to main content

Advertisement

Log in

Ecological impacts and limits of biomass use: a critical review

  • Perspective
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Conventional biomass sources have been widely exploited for several end uses (mostly food, feed, fuel and chemicals). More unconventional sources are continually being sought for meeting the growing planetary demands for biomass materials. Biofuels are already commercially produced in many countries and are becoming mainstream. The role of biorefineries for production of chemicals is also on the rise. Plant biomass is the primary source of food for all multicellular living organisms. Primary production remains a key link in the chain of life support on planet Earth. Is there enough for all? What new strategies (or technologies) are available or promising for providing plant biomass in a safe and sustainable way? What are the potential impacts (footprints and efficiencies) of such strategies? What can be the limiting factors—land, water, energy and nutrients? What might be the limits for specific regions (OECD vs. non-OECD, advanced vs. developing, dry and warm vs. wet and cool, etc.). In this paper, we provided answers to these questions by critically reviewing the pros and cons associated with current and future production and use pathways for biomass. We conclude that in many cases, the jury is still out, and we cannot come to a solid verdict about the future of biomass production and use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All information used were properly referenced and cited.

References

  • Aide TM, Clark ML, Grau HR, López-Carr D, Levy MA, Redo D, Bonilla-Moheno M, Riner G, Andrade-Núñezand MJ, Muñiz M (2013) Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45(2):262–271

    Google Scholar 

  • Alexander P, Brown C, Arneth A, Finnigan J, Rounsevell MDA (2016) Human appropriation of land for food: The role of diet. Global Environmental Change 41:88–98. https://doi.org/10.1016/j.gloenvcha.2016.09.005

    Article  Google Scholar 

  • Allen VG, Pond KR, Saker KE, Fontenot JP, Bagley CP, Ivy RL, Evans RR, Schmidt RE, Fike JH, Zhang X, Ayad JY, Brown CP, Miller MF, Montgomery JL, Mahan J, Wester DB, Melton C (2001) Tasco: Influence of a brown seaweed on antioxidants in forages and livestock-A review. J Anim Sci 79:21–31

    Google Scholar 

  • Altieri MA, Nicholls CI (2008) Scaling up agroecological approaches for food sovereignty in Latin America. Development 51:472–480

    Google Scholar 

  • Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35:869–889

    Google Scholar 

  • Ames Laboratory (2010). Wind turbines may benefit crops. Ames Laboratory, Ames, Iowa, United States. Retrieved 12 March 2020. Available at https://phys.org/news/2010–12-turbines-benefit-crops.html

  • Arodudu O, Helming K, Wiggering H, Voinov A (2016) Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis. Energies 10(1):29. https://doi.org/10.3390/en10010029

    Article  Google Scholar 

  • Arodudu O, van Voinov A, Duren I (2013) Assessing bioenergy potential in rural areas—a NEG-EROEI approach. Biomass Bioenerg 58:350–364

    Google Scholar 

  • Arodudu O, Ibrahim E, Voinov A, van Duren I (2014) Exploring bioenergy potentials of built-up areas based on NEG-EROEI indicators. Ecol Ind 47:67–79

    Google Scholar 

  • Arodudu OH, HelmingVoinov KA, Wiggering H (2017a) Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production: acase study of ethanol and biogas production from maize feedstock. Appl Energy 198:426–439

    Google Scholar 

  • Arodudu O, Helming K, Wiggering H, Voinov A (2017b) Towards a more holistic sustainability assessment framework for agro-bioenergy systems—a review. Environ Impact Assess Rev 62:61–75

    Google Scholar 

  • Asche F (2015) Aquaculture: Opportunities and Challenges. Retrieved from https://www.ictsd.org/sites/default/files/research/E15_Fisheries_Asche_FINAL.pdf

  • Avantium (2020) https://www.avantium.com/our-company/; https://www.boredpanda.com/plant-based-coca-cola-carlsberg-bottles-degrade-in-a-year/

  • Babalola O, Jimba JC, Maduakolam O, Dada OA (2003) Use of vetiver grass for soil and water conservation in Nigeria. Proceedings of Third International Conference on vetiver and Exhibition, pp 293–309. Guangzhou, China, October 2003

  • Bailey M, Sumaila UR (2015) Destructive fishing and fisheries enforcement in eastern Indonesia. Marine Ecology Progress Series, 530, 195–211. Retrieved from https://www.int-res.com/abstracts/meps/v530/p195–211/

  • Bais-Moleman AL, Schulp CJE, Verburg PH (2019) Assessing the environmental impacts of production- and consumption-side measures in sustainable agriculture intensification in the European Union. Geoderma 338(15):555–567

    CAS  Google Scholar 

  • Banks C, Chesshire M, Heaven S, Arnold R (2011) Anaerobic digestion of source- segregated domestic food waste: performance assessment by mass and energy balance. Bioresour Technol 102:612–620

    CAS  Google Scholar 

  • Bang C, Vitina A, Gregg JS, Lindboe HH (2013) Analysis of biomass prices: Future Danish prices for straw, wood chips and wood pellets "final report". Retrieved from https://ens.dk/sites/ens.dk/files/Analyser/analysis_of_biomass_prices_2013.06.18_-_final_report.pdf

  • Barona E, Ramankutty N, Hyman G, Coomes O (2010) The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ Res Lett 5(2):1–9

    Google Scholar 

  • Barron-Gafford GA, Pavao-Zuckerman MA, Minor RL, Sutter LF, Barnett-Moreno I, Blackett DT, Thompson M, Dimond K, Gerlak AK, Nabhan GP, Macknick JE (2019) Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nature Sustain 2:848–855

    Google Scholar 

  • Baum S, Weih M, Busch G, Kroiher F, Bolte A (2009) The impact of short rotation coppice plantations on phytodiversity. Landbauforschung Volkenrode 59(3):163–170

    Google Scholar 

  • Beckman J, Xiarchos IM (2013) Why are Californian farmers adopting more (and larger) renewable energy operations? Renew Energy 55:322–330

    Google Scholar 

  • Bensabeh N, Moreno A, Roig A, Rahimzadeh M, Rahimi K, Ronda JC, Cádiz V, Galià M, Percec V, Cesar Rodriguez-Emmenegger C, Lligadas G (2020) Photoinduced Upgrading of Lactic Acid-Based Solvents to Block Copolymer Surfactants. ACS Sustainable Chemistry and Engineering 8(2):1276–1284. https://doi.org/10.1021/acssuschemeng.9b06599

    Article  CAS  Google Scholar 

  • Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3(4):299–312. https://doi.org/10.1111/j.1757-1707.2010.01088.x

    Article  CAS  Google Scholar 

  • Biller P, Lawson D, Madsen RB, Becker J, Iversen BB, Glasius M (2017) Assessment of agricultural crops and natural vegetation in Scotland for energy production by anaerobic digestion and hydrothermal liquefaction. Biomass Conversion and Biorefinery 7(4):467–477. https://doi.org/10.1007/s13399-016-0230-x

    Article  CAS  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 332(6031):805–809. https://doi.org/10.1126/science.1200165

    Article  CAS  Google Scholar 

  • Błuszkowska U, Nurek T (2014) Effect of mechanization level on manpower needs in forestry. Folia Forestalia Polonica, Series A 56(4):194–201. https://doi.org/10.2478/ffp-2014-0022

    Article  Google Scholar 

  • Boateng AA, Schaffer MA, Mullen CA, Goldberg NM (2019) Mobile demonstration unit for fast- and catalytic pyrolysis: The combustion reduction integrated pyrolysis system (CRIPS). J Anal Appl Pyrol 137:185–194

    CAS  Google Scholar 

  • Borucke M, Moore D, Cranston G, Gracey K, Iha K, Larson J, Lazarus E, Morales JC, Wackernagel M, Galli A (2013) Accounting for demand and supply of the biosphere's regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecol Ind 24:518–533. https://doi.org/10.1016/j.ecolind.2012.08.005

    Article  Google Scholar 

  • Bos-Brouwers HEJ, Langelaan HC, Sanders JPM, Dijk MV, Vuuren AMV (2012) Chances for biomass: integrated valorisation of biomass resources. Retrieved from Wageningen: https://edepot.wur.nl/248864

  • Boulay A-M, Hoekstra AY, Vionnet S (2013) Complementarities of water-focused life cycle assessment and water footprint assessment. Environ Sci Technol 47(21):11926–11927. https://doi.org/10.1021/es403928f

    Article  CAS  Google Scholar 

  • Boyd CE, Gross A (2000) Water use and conservation for inland aquaculture ponds. Fish Manage Ecol 7:55–63

    Google Scholar 

  • Boyd CE, McNevin AA, Clay JW, Johnson HM (2005) Certification issues for some common aquaculture species. Rev Fish Sci 13:231–279

    Google Scholar 

  • Biogen B (2006) Good practice guidelines: anaerobic digestion of farm and food processing residues. United Kingdom, British Biogen, London, England, p 52

    Google Scholar 

  • Campbell BM, Thornton P, Zougmoré R, Asten P, Lipper L (2014) Sustainable intensification: What is its role in climate smart agriculture? Curr Opin Environ Sustain 8:39–43

    Google Scholar 

  • Capritto A (2019a) Impossible Burger vs. beef: Which is better for the environment? CNET, October 28, 2019. Available at https://www.cnet.com/health/is-the-impossible-burger-healthier-than-beef/

  • Capritto A (2019b) Impossible Burger vs beef: Which is healthier? CNET, October 4, 2019. Available at https://www.cnet.com/health/is-the-impossible-burger-healthier-than-beef/

  • Carrington D (2018) Researchers race to make bioplastics from straw and food waste. The Guardian, July 5, 2018, Retrieved 03 June 2020. Available at https://www.theguardian.com/environment/2018/jul/05/researchers-race-to-make-bioplastics-from-straw-and-food-waste#:~:text=New%2520bioplastics%2520are%2520being%2520made,wood%2520and%2520produce%2520useful%2520chemicals.

  • Castellani V, Sala S (2012) Ecological Footprint and Life Cycle Assessment in the sustainability assessment of tourism activities. Ecol Ind 16:135–147. https://doi.org/10.1016/j.ecolind.2011.08.002

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci 117:13596–13602. https://doi.org/10.1073/pnas.1922686117

    Article  CAS  Google Scholar 

  • Chapelle A, Menesguen A, Deslous-Paoli J, Souchu P, Mazouni N, Vaques A, Millet B (2000) Modelling nitrogen, primary production and oxygen in a Mediterranean lagoon. Impact of oyster farming and inputs from the watershed. Ecol Model 127:161–181

    CAS  Google Scholar 

  • Chen G, Patel M (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112(4):2082–2099

    CAS  Google Scholar 

  • Chojnacka K (2008) Using biosorption to enrich the biomass of seaweeds from the Baltic Sea with microelements to produce mineral feed supplement for livestock. Biochem Eng J 39:246–257

    CAS  Google Scholar 

  • Ciccarese L, Pellegrino P, Pettenella D (2014) A new principle of the European Union forest policy: the cascading use of wood products. L’Italia Forestale e Montana, 69 (5): 285–290. http:// dx.doi.org/10.4129/ifm.2014.5.01

  • Corbin R (2019) A Basement Garden. Chapter 3: Growing Fungus in the Basement—On Purpose! https://www.trybackyardfarming.com/basement-garden-growing-fungus-on-purpose/

  • CU (2010) Study Shows Wind Turbines on Farmlands May Benefit Crops. University of Colorado, Boulder, United States. Retrieved 12 March 2020. Available at https://www.colorado.edu/today/2010/12/16/study-shows-wind-turbines-farmlands-may-benefit-crops

  • Daioglou V, Stehfest E, Wicke B, Faaij A, van Vuuren DP (2016) Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy 8(2):456–470. https://doi.org/10.1111/gcbb.12285

    Article  Google Scholar 

  • Davies AR, Cretella A, Franck V (2019) Food sharing initiatives and food democracy: practice and policy in three European Cities. Polit Govern 7(4):8–20

    Google Scholar 

  • Davies A, Evans D (2019) Urban food sharing: Emerging geographies of production, consumption and exchange. Geoforum 99:154–159

    Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30(2):219–230. https://doi.org/10.1016/j.pecs.2003.10.004

    Article  CAS  Google Scholar 

  • Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energy Convers Manage 50(7):1746–1760. https://doi.org/10.1016/j.enconman.2009.03.013

    Article  CAS  Google Scholar 

  • Demirbas A (2011) Waste management, waste resource facilities and waste conversion processes. Energy Convers Manage 52(2):1280–1287

    Google Scholar 

  • Depta L (2018) Global food waste and its environmental impact. Retrieved 12April 2020. Available at https://en.reset.org/knowledge/global-food-waste-and-its-environmental-impact-09122018

  • Dinerstein E, Vynne C, Sala E, Joshi AR, Fernando S, Lovejoy TE, Mayorga J, Olson D, Asner GP, Baillie JEM, Burgess ND, Burkart K, Noss RF, Zhang YP, Baccini A, Birch T, Hahn N, Joppa LN, Wikramanayake E (2019) A global deal for nature: guiding principles, milestones, and targets. Science Advances, 5(4), eaaw2869. https://doi.org/10.1126/sciadv.aaw2869

  • Doerr SH, Santín C (2016) Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos Trans R Soc Lond B Biol Sci 371(1696):20150345. https://doi.org/10.1098/rstb.2015.0345

    Article  Google Scholar 

  • Domke GM, Becker DR, D’Amato AW, Ek AR, Woodall CR (2012) Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA. Biomass Bioenerg 36:141–150

    CAS  Google Scholar 

  • Dougherty B (2019) Regenerative agriculture: the path to healing agroecosystems and feeding the world in the 21st century. A report for nuffield international farming scholars, Nuffield International Project No. 1801, pp.45

  • Driscoll J, Tyedmers P (2010) Fuel use and greenhouse gas emission implications of fisheries management: the case of the New England Atlantic herring fishery. Marine Policy 34(3):353–359

    Google Scholar 

  • Dykstra DP (2001) Chapter 2: Reduced Impact Logging: concepts and issues. In: FAO, Applying reduced impact logging to advance sustainable forest management. Retrieved 12 March 2020. Available at https://www.fao.org/docrep/005/ac805e/ac805e04.htm#bm04

  • EEA (2019) Climate change adaptation in the agriculture sector in Europe. EEA Report No 04/2019, pp 108. Available at https://www.euroseeds.eu/app/uploads/2019/09/Climate-change-adaptation-in-the-agriculture-sector-in-Europe.pdf

  • EBTP (2016) Bioenergy value chains 4: pyrolysis and torrefaction. Fact Sheet. European Biofuels Technology Platform, Biofuel, Vincennes, France. Retrieved 12 March 2020. Available at https://www.etipbioenergy.eu/images/EIBI-4-torrefaction%2520and%2520pyrolysis.pdf

  • EC (2015). Closing the loop—an EU action plan for the Circular Economy. European Commission. Brussels, Belgium. Retrieved 12 April 2020. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss, P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared by Working Group III of the intergovernmental panel on climate change, Cambridge University Press, Cambridge

  • EEA (2006) How much bioenergy can Europe produce without harming the environment?. European Environment Agency, Copenhagen

    Google Scholar 

  • Ekener E, Hansson J, Larsson A, Pecke P (2018) Developing life cycle sustainability assessment methodology by applying values-based sustainability weighting—tested on biomass based and fossil transportation fuels. J Clean Prod 181:337–351

    Google Scholar 

  • Ellingsen H, Aanondsen SA (2006) Environmental impacts of wild caught cod and farmed salmon: a comparison with chicken. Int J Life Cycle Assess 1(1):60–65

    Google Scholar 

  • Elzerman JE, Hoek AC, van Boekel MAJS, Luning PA (2011) Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Qual Prefer 22(3):233–240. https://doi.org/10.1016/j.foodqual.2010.10.006

    Article  Google Scholar 

  • EPI-FAO (2010) Eco-economy indicators-forest cover. forest resources assessment 2010: global tables. Earth Policy Institute of the Food and Agricultural Organization of the United Nations, Rome, Italy.

  • Erb K-H, Fetzel T, Plutzar C, Kastner T, Lauk C, Niedertscheider M, Körner C, Haberl H (2016) Biomass turnover time in terrestrial ecosystems halved by land use. Nat Geosci 9(9):674–678

    CAS  Google Scholar 

  • Erb K-H, Lauk C, Kastner T, Mayer A, Theurl MC, Haberl H (2016) Exploring the biophysical option space for feeding the world without deforestation. Nat Commun 7:11382. https://doi.org/10.1038/ncomms11382

    Article  CAS  Google Scholar 

  • FAO, IFAD, UNICEF, WFP and WHO (2019). The state of food security and nutrition in the world 2019: safeguarding against economic slowdowns and downturns.

  • FAO (2018a) The global status of seaweed production, trade and utilization. Retrieved from https://www.fao.org/3/CA1121EN/ca1121en.pdf

  • FAO (2018b) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Retrieved from https://www.fao.org/3/I9540EN/i9540en.pdf

  • FAO and UNEP (2020). The State of the World’s Forests (2020) Forests, biodiversity and people. Italy, Rome, p 214

  • FareShare (2017). FareShare FoodCloud celebrate 5 million meals with Tesco. Retrieved 12April 2020. Available at https://fareshare.org.uk/fareshare-foodcloud-celebrate-5-million-meals-with-tesco/

  • Festin ES, Tigabu M, Chileshe MN, Syampungani S, Odén PC (2019) Progresses in restoration of post-mining landscape in Africa. J Forest Res 30(2):381–396. https://doi.org/10.1007/s11676-018-0621-x

    Article  Google Scholar 

  • Fuwape JA, Akindele SO (1997) Biomass yield and energy value of some fast-growing multipurpose trees in Nigeria. Biomass Bioenerg 12(2):101–106

    CAS  Google Scholar 

  • Garcia-Vaquero M, Hayes M (2016) Red and green macroalgae for fish and animal feed and human functional food development. Food Reviews International. 32, 15–45. https://doi.org/10.1080/87559129.2015.1041184In, NH (2019). Vegan burgers vs meat burgers: what’s healthier? Plant-based patties have more fibre, less cholesterol, dietitian says, but more sodium. South China Morning Post, 31 October 2019, Available at https://www.scmp.com/lifestyle/health-wellness/article/3035728/vegan-burgers-vs-meat-burgers-whats-healthier-plant-based

  • Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci USA 106(25):10219–10223

    CAS  Google Scholar 

  • Gerbens-Leenes PW, Xu L, de Vries GJ, Hoekstra AY (2014) The blue water footprint and land use of biofuels from algae. Water Resour Res 50(11):8549–8563. https://doi.org/10.1002/2014wr015710

    Article  CAS  Google Scholar 

  • Ghosh PK, Mahanta SK, Ram SN (2017) Sources of reactive nitrogen, environmental and climate effects, management options, and policies, chapter 13- Nitrogen Dynamics in Grasslands, The Indian Nitrogen Assessment, pp 187–205

  • Giampietro M (2019) On the circular bioeconomy and decoupling: implications for sustainable growth. Ecol Econ 162:143–156. https://doi.org/10.1016/j.ecolecon.2019.05.001

    Article  Google Scholar 

  • Gibbs JH, Salmon KM (2015) Mapping the world's degraded lands. Appl Geogr 57:12–21

    Google Scholar 

  • Glenn E, Stafford SM, Squires V (1998) On our failure to control desertification: Implications for global change issues, and a research agenda for the future. Environ Sci Policy 1:71–78

    Google Scholar 

  • Graedel TE, Allwood J, Birat JP, Buchert M, Hagelüken C, Reck BK, Sibley SF, Sonnemann G (2011) What do we know about metal recycling rates? J Ind Ecol 15(3):355–366

    CAS  Google Scholar 

  • Gruda N (2012) Current and future perspective of growing media in Europe. Acta Hort 960:37–43

    Google Scholar 

  • Gruda N (2019) Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 9:298–322

    CAS  Google Scholar 

  • Gruda N, Bisbis MB, Tanny J (2019) Influence of climate change on protected cultivation: impacts and sustainable adaptation strategies—a review. J Clean Product 225:481–495

    Google Scholar 

  • Guillen J, Cheilari A, Damalas D, Barbas T (2016) Oil for fish: an energy return on investment analysis of selected European Union fishing fleets. J Ind Ecol 20(1):145–153

    Google Scholar 

  • Gurian-Sherman D (2019) Can Eating Cows Save the Planet? Food Revolution Network, October 16, 2019. Retrieved 15 June 2020. Available at https://foodrevolution.org/blog/regenerative-agriculture/

  • Haas W, Krausmann F, Wiedenhofer D, Heinz M (2015) How circular is the global economy? An assessment of material flows, waste production and recycling in the EU and the world in 2005. J Ind Ecol 19(5):765–777

    Google Scholar 

  • Haberl H, Geissler S (2000) Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol Eng 16:111–121

    Google Scholar 

  • Haberl H, Wackernagel M, Krausmann F, Erb K-H, Monfreda C (2004) Ecological footprints and human appropriation of net primary production: a comparison. Land Use Policy 21(3):279–288. https://doi.org/10.1016/j.landusepol.2003.10.008

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C et al (2007) Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci 104(31):12942–12947. https://doi.org/10.1073/pnas.0704243104

    Article  CAS  Google Scholar 

  • Hall CAS, Balogh S, Murphy DJR (2009) What is the Minimum EROI that a Sustainable Society Must Have? Energies 2:25–47. https://doi.org/10.3390/en20100025

    Article  Google Scholar 

  • Hall CAS, Dale BE, Pimentel D (2011) Seeking to understand the reasons for different energy return on investment (EROI) estimates for biofuels. Sustainability 3(12):2413–2432

    Google Scholar 

  • Hammond GP, Li B (2016) Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption. Global Change Biol Bioenergy 8(5):894–908. https://doi.org/10.1111/gcbb.12300

    Article  CAS  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162(3859):1243–1248. https://doi.org/10.1126/science.162.3859.1243

    Article  CAS  Google Scholar 

  • Harmsen PFH, Hackmann MM, Bos HL (2014) Green building blocks for bio-based plastics. Biofuels, Bioprod Biorefin 8(3):306–324. https://doi.org/10.1002/bbb.1468

    Article  CAS  Google Scholar 

  • Harvey B, Brais S (2002) Effects of mechanized careful logging on natural regeneration and vegetation competition in the southeastern Canadian boreal forest. Can J Forest Resour 32:653–666

    Google Scholar 

  • Hayes J (2015) Returning mined land to productivity through reclamation. Cornerstone 3(4):4–9

    Google Scholar 

  • Helliwell JF, Layard R, Sachs JD (2018) World Happiness Report.

  • Hernandez RR, Hoffacker MK, Field CB (2014) Land-use efficiency of big solar. Environ Sci Technol 48:1315–1323

    CAS  Google Scholar 

  • Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energy Rev 32:504–512. https://doi.org/10.1016/j.rser.2014.01.025

    Article  Google Scholar 

  • Hoekstra AY (2017) Water Footprint Assessment in Supply Chains. In: Bouchery Y, Corbett CJ, Fransoo JC, Tan T (eds) Sustainable supply chains: a research-based textbook on operations and strategy. Springer International Publishing, Cham, pp 65–85

    Google Scholar 

  • Hoffacker MK, Allen MF, Hernandez RR (2017) Land-sparing opportunities for solar energy development in agricultural landscapes: a case study of the great Central Valley, CA, United States. Environ Sci Technol 51:14472–14482

    CAS  Google Scholar 

  • Holmatov B, Hoekstra AY, Krol MS (2019) Land, water and carbon footprints of circular bioenergy production systems. Renew Sustain Energy Rev 111:224–235. https://doi.org/10.1016/j.rser.2019.04.085

    Article  Google Scholar 

  • Honlah E, Segbefia AY, Appiah DO, Mensah M, Atakora PO, Sabater A (2019) Effects of water hyacinth invasion on the health of the communities, and the education of children along River Tano and Abby-Tano Lagoon in Ghana. Cogent Soc Sci 5(1):1619652

    Google Scholar 

  • Hüesker F, Moss T, Naumann M (2011) Managing water infrastructures in the berlin-brandenburg region between climate change. Econ Restruct Commer DIE ERDE 142(1–2):187–208

    Google Scholar 

  • IEA (2017) Delivering sustainable bioenergy. Retrieved from https://www.iea.org/publications/freepublications/publication/Technology_Roadmap_Delivering_Sustainable_Bioenergy.pdf

  • IEA (2019) Renewables information: overview. Retrieved from https://iea.blob.core.windows.net/assets/6959bcb0-d298–404c-80e1–2afaa784798e/Renewables_Information_2019_Overview.pdf

  • Iffland K, Carus M, de Bie F, Diels L, van Haveren J, Willems P, Ravenstijn J, Vink E, Wagemann K (2015) Definition, calculation and comparison of the “Biomass Utilization Efficiencies (BUE)” of various bio-based chemicals, polymers and fuels. Huerth, Germany

    Google Scholar 

  • Inman M (2010) Planting wind energy on farms may help crops, say Researchers. Retrieved 30 March 2020. Available at https://www.nationalgeographic.com/news/energy/2011/12/111219-wind-turbines-help-crops-on-farms/

  • Jahirul M, Rasul M, Chowdhury A, Ashwath N (2012) Biofuels production through biomass pyrolysis: a technological review. Energies 5(12): 4952. Retrieved from https://www.mdpi.com/1996–1073/5/12/4952

  • James JJ (2014) STTR phase 1 final technical report for project entitled "Developing a Mobile Torrefaction Machine". United States, 2014. doi:10.2172/1122819

  • Johnson PM (2006) Governing global desertification: linking environmental degradation, poverty and participation. Ashgate Publishing. ISBN:978–0–7546–4359–3. https://books.google.com/books?id=da6vhzHEpf0C

  • Karatzos S, McMillan JD, Saddler, JN (2014) The potential and challenges of drop-in biofuels (T39-T1). Retrieved from https://task39.sites.olt.ubc.ca/files/2014/01/Task-39-Drop-in-Biofuels-Report-FINAL-2-Oct-2014-ecopy.pdf

  • Kauffman N, Hayes D, Brown R (2011) A life cycle assessment of advanced biofuel production from a hectare of corn. Fuel 90(11):3306–3314. https://doi.org/10.1016/j.fuel.2011.06.031

    Article  CAS  Google Scholar 

  • Klimiuk E, Pokój T, Budzyński W, Dubis B (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Biores Technol 101(24):9527–9535. https://doi.org/10.1016/j.biortech.2010.06.130

    Article  CAS  Google Scholar 

  • Krausmann F, Gingrich S, Eisenmenger N, Erb K-H, Haberl H, Fischer-Kowalski M (2009) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68(10):2696–2705

    Google Scholar 

  • Krausmann F, Erb K-H, Gingrich S, Haberl H, Bondeau A, Gaube V, Lauk C, Plutzar C, Searchinger TD (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acade Sci USA 110(25):10324–10329

    CAS  Google Scholar 

  • Krausmann F, Wiedenhofer D, Lauk C, Haas W, Tanikawa H, Fishman T, Miatto A, Schandl H, Haberl H (2017) Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc Natl Acad Sci USA 114(8):1880–1885

    CAS  Google Scholar 

  • Krausmann F, Lauk C, Haas W, Wiedenhofer D (2018) From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015. Global Environmental Change 52:131–140

    Google Scholar 

  • Kröger R, Dunne EJ, Novak J, King KW, McLellan E, Smith DR, Strock J, Boomer K, Tomer M, Noe GB (2013) Downstream approaches to phosphorus management in agricultural landscapes: Regional applicability and use. Sci Total Environ 442:263–274

    Google Scholar 

  • Kulak M, Graves AR, Chateerton J (2013) Reducing greenhouse gas emissions with urban agriculture: a Life Cycle Assessment perspective. Landscape and Urban Planning 111:68–78, https://doi.org/10.1016/j.landurbplan.2012.11.007Changes in forest floor and mineral soil carbon and nitrogen stocks in a boreal forest after clear‐cutting and mechanical site preparation

  • Lambert JG, Hall CAS, Balogh S, Gupta A, Arnold M (2014) Energy, EROI and quality of life. Energy Policy 64:153–167

    Google Scholar 

  • Leahy S (2018) 75% of Earth's Land Areas Are Degraded. National Geographic. Retrieved 30 January 2020. Available at https://www.nationalgeographic.com/news/2018/03/ipbes-land-degradation-environmental-damage-report-spd/

  • Le Noë J, Roux N, Billen G, Gingrich S, Erb K-H, Krausmann F, Thieu V, Silvestre M, Garnier J (2020) The phosphorus legacy offers opportunities for agro-ecological transition (France 1850–2075). Environ Res Lett. https://doi.org/10.1088/1748-9326/ab82cc

    Article  Google Scholar 

  • Llevot A, Dannecker P-K, von Czapiewski M, Over LC, Söyler Z, Meier MAR (2016) Renewability is not enough: recent advances in the sustainable synthesis of biomass-derived monomers and polymers. Chem A Eur J 22(33):11510–11521. https://doi.org/10.1002/chem.201602068

    Article  CAS  Google Scholar 

  • Lima M, Skutsch M, de Medeiros Costa G (2011) Deforestation and the social impacts of soy for biodiesel: perspectives of farmers in the south Brazilian Amazon. Ecol Soc 16(4):4

    Google Scholar 

  • Lin BB, Perfecto I, Vandermeer J (2008) Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience 58(9):847–854

    Google Scholar 

  • López-Alt JK (2020) How do they make plant-based meat behave like beef? New York Times, March 3, 2020. Available at https://www.nytimes.com/2020/03/03/dining/plant-based-meat-science.html

  • Macedo MN, DeFries RS, Morton DC, Stickler CM, Galford GL, Shimabukuro YE (2000s) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc Natl Acad Sci 109(4):1341–1346

    CAS  Google Scholar 

  • Mair C, Stern T (2017) Cascading utilization of wood: a matter of circular economy? Current Forest Rep 3:281–295

    Google Scholar 

  • Malagnoux M (2007) Arid land forests of the world: global environmental perspectives, Food and Agricultural Organization, Forestry Department. Afforestation and Sustainable Forests as a means to Combat Desertification, 16–19 April 2007, Jerusalem, Israel.

  • Martinez-Mate MA, Martin-Gorriz B, Martínez-Alvarez V, Soto-García M, Maestre-Valero JF (2018) Hydroponic system and desalinated seawater as an alternative farm-productive proposal in water scarcity areas: energy and greenhouse gas emissions analysis of lettuce production in southeast Spain. J Clean Prod 172:1298–1310. https://doi.org/10.1016/j.jclepro.2017.10.275

    Article  CAS  Google Scholar 

  • Mathiesen K (2016) How forest management helps lay the conditions for wildfires. The Guardian. Retrieved 30 March 2020. Available at https://www.theguardian.com/environment/2016/may/06/how-forest-management-helps-lay-the-conditions-for-wildfires

  • Mayer A, Haas W, Wiedenhofer D (2017) How countries' resource use history matters for human well-being–an investigation of global patterns in cumulative material flows from 1950 to 2010. Ecol Econ 134:1–10

    Google Scholar 

  • Mcdougall R, Rader R, Kristiansen P (2020) Urban agriculture could provide 15% of food supply to Sydney, Australia, under expanded land use scenarios. Land Use Policy 94:104554

    Google Scholar 

  • McEwan A, Marchi E, Spinelli R, Brink M (2020) Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. J For Res 31:339–351

    CAS  Google Scholar 

  • Meyer AKP, Raju CS, Kucheryavskiy SV, Holm-Nielsen JB (2015) The energy balance of utilising meadow grass in Danish biogas production. Resour, Conserv Recycl 104:265–275. https://doi.org/10.1016/j.resconrec.2015.07.019

    Article  Google Scholar 

  • MFRC (2012). Minnesotssrs. The Minnesota Forest Resources Council, Saint Paul, Minnesota, United States, pp. 590. Retrieved 12 March 2020. Available at https://mn.gov/frc/docs/MFRC_Revised_Forest_Management_Guidelines_(2012).pdf

  • Shirazi AM, Akram A, Rafiee S, Mousavi Avval SH, Bagheri Kalhor E (2012) An analysis of energy use and relation between energy inputs and yield in tangerine production. Renew Sustain Energy Rev 16(7):4515–4521. https://doi.org/10.1016/j.rser.2012.04.047

    Article  Google Scholar 

  • Monagail MM, Cornish L, Morrison L, Araújo R, Critchley AT (2017) Sustainable harvesting of wild seaweed resources. Eur J Phycol 52(4):371–390

    Google Scholar 

  • Mózner Z, Tabi A, Csutora M (2012) Modifying the yield factor based on more efficient use of fertilizer—the environmental impacts of intensive and extensive agricultural practices. Ecol Ind 16:58–66. https://doi.org/10.1016/j.ecolind.2011.06.034

    Article  CAS  Google Scholar 

  • Mulhollem J (2019) Seaweed feed additive cuts livestock methane but poses questions. ScienceDaily. Penn State Retrieved 12 March 2020. Available at www.sciencedaily.com/releases/2019/06/190617164642.htm

  • Murphy DJ, Hall CAS, Powers B (2011) New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environ Dev Sustain 13:179–202

    Google Scholar 

  • Nattrass L, Biggs C, Bauen A, Parisi C, Rodríguez-Cerezo E, Barbero MG (2016) The EU bio-based industry: results from a survey. Institute for Prospective and Technological Studies, Joint Research Centre, European Commission

  • Nemecek T, Huguenin-Elie O, Dubois D, Gaillard G, Schaller B, Chervet A (2011) Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric Syst 104(3):233–245. https://doi.org/10.1016/j.agsy.2010.07.007

    Article  Google Scholar 

  • Newburger E, Lucas A (2019) Beyond Meat uses climate change to market fake meat substitutes. Scientists are cautious. CNBC, September 2, 2019. Available at https://www.cnbc.com/2019/09/02/beyond-meat-uses-climate-change-to-market-fake-meat-substitutes-scientists-are-cautious.html

  • OECD (2020) How's Life? Measuring Well-being, OECD Publishing, Paris, https://doi.org/10.1787/9870c393-enhttps://www.oecd.org/statistics/measuring-well-being-and-progress.htm

  • Olafsson E, Johnstone R, Ndaro-Simon GM (1995) Effects of intensive seaweed farming on the neiobenthos in a tropical lagoon. J Exp Mar Biol Ecol 191:101–117

    Google Scholar 

  • Oldenzie IR, Weber H (2013) Introduction: reconsidering recycling. Contemp Eur Hist 22(3):347–370

    Google Scholar 

  • Ortiz-Ospina E, Roser M (2017) Happiness and Life Satisfaction. https://ourworldindata.org/happiness-and-life-satisfaction

  • Osmanski S (2019) What is plant-based meat? Greenmatters. Retrieved 5th May 2020. Available at https://www.greenmatters.com/p/plant-based-meats

  • Palma MA, Richardson JW, Roberson BE, Riberad LA, Outlaw JE, Munster C (2011) Economic feasibility of a mobile fast pyrolysis system for sustainable bio-crude oil production. Int Food Agribus Manage Rev 14(3):1–16

    Google Scholar 

  • Parikka M (2004) Global biomass fuel resources. Biomass Bioenerg 27(6):613–620. https://doi.org/10.1016/j.biombioe.2003.07.005

    Article  Google Scholar 

  • Park H (2020) Could seaweed hold the answer to producing sustainable animal feed? Farmers Guardian. Retrieved 12 March 2020. Available at https://www.fginsight.com/news/news/could-seaweed-hold-the-answer-to-producing-sustainable-animal-feed-101015

  • Papadopoulou EL, Basnett P, Paul UC, Marras S, Ceseracciu L, Roy I, Athanassiou A (2019) Green composites of poly(3-hydroxybutyrate) containing graphene nanoplatelets with desirable electrical conductivity and oxygen barrier properties. ACS Omega 4(22):19746–19755. https://doi.org/10.1021/acsomega.9b02528

    Article  CAS  Google Scholar 

  • Parker R, Tyedmers P (2012) Uncertainty and natural variability in the ecological footprint of fisheries: a case study of reduction fisheries for meal and oil. Ecol Ind 16:76–83

    Google Scholar 

  • Pauly D, Zeller D (2016) Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Commun 7:10244

    CAS  Google Scholar 

  • Pelletier N, Tyedmers P (2007) Feeding farmed salmon: Is organic better? Aquaculture 272:399–416

    Google Scholar 

  • Pelletier N, Tyedmers P (2008) Life cycle considerations for improving sustainability assessments in seafood awareness campaigns. Environ Manage 42:918–931

    Google Scholar 

  • Pelletier N, Tyedmers P (2010) Life cycle assessment of frozen tilapia fillets from Indonesian lake-based and pond-based intensive aquaculture systems. J Ind Ecol 14(3):467–481

    CAS  Google Scholar 

  • Pelletier N, Tyedmers P (2011) An ecological economic critique of the use of market information in life cycle assessment research. J Ind Ecol 15(3):342–354

    Google Scholar 

  • Pfister S, Boulay A-M, Berger M, Hadjikakou M, Motoshita M, Hess T, Ridoutt B, Weinzettel J, Scherer L, Döll P, Manzardo A, Núñez M, Verones F, Humbert S, Buxmann K, Harding K, Benini L, Oki T, Finkbeiner M, Henderson A (2017) Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) A critique on the water-scarcity weighted water footprint in LCA. Ecol Ind 72:352–359. https://doi.org/10.1016/j.ecolind.2016.07.051

    Article  Google Scholar 

  • Phillips MJ (1990) Environmental aspects of seaweed culture. FAO/NACA Technical Resource Papers, Regional Workshop on the Culture and Utilization of Seaweeds, vol II. Network of Aquaculture Centers in Asia Pacific, Bangkok, Thailand, pp 27–31

    Google Scholar 

  • Piirainen S, Finér L, Starr M (2015) Changes in forest floor and mineral soil carbon and nitrogen stocks in a boreal forest after clear-cutting and mechanical site preparation. Eur J Soil Sci 66(4):735–743

    CAS  Google Scholar 

  • Piotrowski S, Carus M, Essel R (2015) Global bioeconomy in the conflict between biomass supply and demand. Retrieved from https://bio-based.eu/?did=29249&vp_edd_act=show_download

  • Poisson A, Hall CAS (2013) Time series EROI for Canadian oil and gas. Energies 6:5940–5959. https://doi.org/10.3390/en6115940

    Article  Google Scholar 

  • Poltoraka BJ, Labelle ER, Jaeger D (2018) Soil displacement during ground-based mechanized forest operations using mixed-wood brush mats. Soil Tillage Res 179:96–104

    Google Scholar 

  • Ragland KW, Aerts DJ, Baker AJ (1991) Properties of wood for combustion analysis. Biores Technol 37(2):161–168. https://doi.org/10.1016/0960-8524(91)90205-X

    Article  CAS  Google Scholar 

  • Rajewski DA, Takle ES, Prueger JH, Doorenbos RK (2016) Toward understanding the physical link between turbines and microclimate impacts from in situ measurements in a large wind farm. J Geophys Res Atmos 121(22):13392–13414

    Google Scholar 

  • Reboredo F, Pais J (2014) Evolution of forest cover in Portugal: from the miocene to the present. doi: 10.1007/978-3-319-08455-8

  • Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T, Schmidt WP, Suhh S, Weidema BP, Pennington DW (2004) Life cycle assessment: Part 1: framework, goal and scope definition, inventory analysis, and applications. Environ Int 30(5):701–720. https://doi.org/10.1016/j.envint.2003.11.005

    Article  CAS  Google Scholar 

  • Reinicke C (2019) Beyond Meat costs more than traditional meat, but data show consumers are willing to pay the premium price - for now (BYND). Retrieved from https://markets.businessinsider.com/news/stocks/beyond-meat-sales-are-high-but-so-is-price-2019–7–1028346898

  • Regeneration International (2019) Why regenerative agriculture. Retrieved 15 June 2020. Available at https://regenerationinternational.org/why-regenerative-agriculture/

  • Rentizelas AA, Tolis AJ, Tatsiopoulos IP (2009) Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renew Sustain Energy Rev 13(4):887–894. https://doi.org/10.1016/j.rser.2008.01.003

    Article  Google Scholar 

  • Rezaei M, Liu B (2017) Food loss and waste in the food supply chain. Reus, International Nut and Dried Fruit Council, pp 26–27

    Google Scholar 

  • Ritchie H, Roser M (2020) Seafood production. OurWorldInData.org. Retrieved on 23 March 2020. Available at https://ourworldindata.org/seafood-production

  • Rogner H-H, Aguilera RF, Archer C, Bertani R, Bhattacharya SC, Dusseault MB, Gagnon L, Haberl H, Hoogwijk M, Johnson A, Rogner ML, Wagner H, Yakushev V (2012) Chapter 7—energy resources and potentials. In Global energy assessment - toward a sustainable future (pp 423–512). Cambridge University Press, Cambridge and New York, NY and the International Institute for Applied Systems Analysis, Laxenburg, Austria.

  • Ruffino B, Campo G, Genon G, Lorenzi E, Novarino D, Scibilia G, Zanetti M (2015) Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: performance, energy and economical assessment. Biores Technol 175:298–308

    CAS  Google Scholar 

  • Rulli MC, Bellomi D, Cazzoli A, De Carolis G, D'Odorico P (2016) The water-land-food nexus of first-generation biofuels. Sci Rep 6:22521. https://doi.org/10.1038/srep22521

    Article  CAS  Google Scholar 

  • Scarlat N, Martinov M, Dallemand J (2010) Assessment of the availability of agricultural crop residues in the European union: potential and limitations for bioenergy use. Waste Manage 30(10):1889–1897. https://doi.org/10.1016/j.wasman.2010.04.016

    Article  Google Scholar 

  • Schweier J, Becker G (2013) Economics of poplar short rotation coppice plantations on marginal land in Germany. Biomass Bioenerg 59:494–502

    Google Scholar 

  • SE4ALL (2013) Global tracking framework. Retrieved from https://documents.worldbank.org/curated/en/603241469672143906/pdf/778890GTF0full0report.pdf

  • SEAI (2017) Assessment of cost and benefits of biogas and biomethane in Ireland. Sustainable Energy Authority of Ireland, Dublin, Ireland, pp.107 Retrieved 12 April 2020. Available at https://www.seai.ie/publications/Assessment-of-Cost-and-Benefits-of-Biogas-and-Biomethane-in-Ireland.pdf

  • Severson K (2019) Can meat actually save the planet? Huffpost, July 18, 2019. Retrieved 15 June 2020. Available at https://www.huffpost.com/entry/meat-save-planet-regenerative-farming_l_5d261f7ae4b0583e482b0192?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAJkT9G7xfRPZYdBXsdzyMo8j084i6YZEWBSqMGz3yZXsflZjJn5uar2yzXBp6V3fln54CWmW7_TXBeCkEbbY8loc9pXaJVVXMBBGLLu4cgcexJkN7R19STG5TWCxg7I1lI3e_CV7WCiPAalSzYAwqtmqpupZ3Qe1xXlNZXiwG-lk

  • Shepon A, Eshel G, Noor E, Milo R (2016) Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ Res Lett 11(10):105002. https://doi.org/10.1088/1748-9326/11/10/105002

    Article  CAS  Google Scholar 

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st—to 2nd—Generation biofuel technologies: an overview of current industry and RD&D activities. Retrieved from Paris, France

    Google Scholar 

  • Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33:56–106. https://doi.org/10.1016/j.pecs.2006.08.001

    Article  CAS  Google Scholar 

  • Smith P, Haberl H, Popp A, Erb K-H, Lauk C, Harper R, Tubiello FN, de Siqueira Pinto A, Jafari M, Sohi S, Masera O, Böttcher H, Berndes G, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Mbow C, Ravindranath NH, Rice CW, Carmenza RA, Romanovskaya A, Sperling F, Herrero M, House JI, Rose S (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob Change Biol 19(8):2285–2302

    Google Scholar 

  • Smith AM, Whittaker C, Shield I, Ross AB (2018) Potential for production of high-quality bio-coal from early harvested Miscanthus by hydrothermal carbonisation. Fuel 220:546–557

    CAS  Google Scholar 

  • Stanimirova R, Arévalo P, Kaufmann RK, Maus V, Lesiv M, Havlík P, Friedl MA (2019) Sensitivity of global pasturelands to climate variation. Earth's Future 7(12):1353–1366. https://doi.org/10.1029/2019EF001316

    Article  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000

    CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–22026

    CAS  Google Scholar 

  • Thomas DSG, Knight M, Wiggs GFS (2005) Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435:1218–1221

    CAS  Google Scholar 

  • Thornbush M (2015) Urban agriculture in the transition to low carbon cities through urban greening. Environ Sci 2(3):852–867

    Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mole Sci 10(9): 3722–3742. Retrieved from https://www.mdpi.com/1422–0067/10/9/3722

  • Trainor AM, McDonald RI, Fargione J (2016) Energy sprawl is the largest driver of land use change in United States. PLoS ONE 11:7896–7906

    Google Scholar 

  • Tripathi N, Singh RS, Hills CD (2016) Soil carbon development in rejuvenated Indian coal mine spoil. Ecol Eng 90:482–490

    Google Scholar 

  • Sternberg T (2016) Water megaprojects in deserts and drylands. Int J Water Resour Dev 32(2):301–320. https://doi.org/10.1080/07900627.2015.1012660

    Article  Google Scholar 

  • Truong PN (1999) Vetiver grass technology for land stabilisation, erosion and sediment control in the Asia Pacific region. In: Proceedings of first asia pacific conference on ground and water bioengineering for erosion control and slope stabilisation, pp 72–84 Manila, Philippines, April 1999.

  • Tugend A (2019) Is the new meal any better than the old meal. New York Times, September 21, 2019. Available at 10.1080/09670262.2017.1365273https://www.nytimes.com/2019/09/21/climate/plant-based-meat.html

  • Tyedmers P (2000) Salmon and Sustainability: the biophysical cost of producing salmon through the commercial salmon fishery and the intensive salmon culture industry. Doctoral dissertation. University of British Columbia. https://circle.ubc.ca/ handle/2429/13201

  • Tyedmers P (2001) Energy consumed by North Atlantic Fisheries. In ‘‘Fisheries Impacts on North Atlantic Ecosystems: Catch, Effort and National/Regional Datasets’’ (D. Zeller, R. Watson, and D. Pauly, Eds.), Fisheries Centre Research Reports 9(3), 12–34

  • Tyedmers P (2004) Fisheries and energy use. Encycloped Energy 2:683–693

    Google Scholar 

  • UN (2020) Desertification. Retrieved from https://www.un.org/en/events/desertificationday/desertification.shtml

  • USEIA (2019) International Energy Outlook 2019 with projections to 2050. Retrieved from https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf

  • van den Burg SWK, van Duijn AP, Bartelings H, van Krimpen MM, Poelman M (2016) The economic feasibility of seaweed production in the North Sea. Aquacult Econ Manage 20(3):235–252. https://doi.org/10.1080/13657305.2016.1177859

    Article  Google Scholar 

  • van Duren IC, Voinov A, Arodudu OT, Firrisa MT (2015) Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renew Energy 74:49–59

    Google Scholar 

  • Vanham D, Leip A, Galli A, Kastner T, Bruckner M, Uwizeye A, van Dijk K, Ercin E, Dalin C, Brandão M, Bastianoni S, Fang K, Leach A, Chapagain A, Van der Velde M, Sala S, Pant R, Mancini L, Monforti-Ferrario F, Carmona-Garcia G, Marques A, Weiss F, Hoekstra AY (2019) Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci Total Environ 693:133642. https://doi.org/10.1016/j.scitotenv.2019.133642

    Article  CAS  Google Scholar 

  • Voinov A, Arodudu O, van Duren I, Morales J, Qin L (2015) Estimating the potential of roadside vegetation for bioenergy production. J Clean Product 102:213–225

    Google Scholar 

  • WAD3-JRC (2018) Mining-world atlas of desertification. Joint Research Centre of the European Commission. Retrieved 30 March 2020. Available at https://wad.jrc.ec.europa.eu/mining

  • Wackernagel M, Rees W (1998) Our ecological footprint: reducing human impact on the earth (Vol. 9): New Society Publishers

  • Wackernagel M, Onisto L, Bello P, Linares AC, Falfán ISL, Garcıa JM, Guerrero AIS, Guerrero MGS (1999) National natural capital accounting with the ecological footprint concept. Ecol Econ 29(3):375–390

    Google Scholar 

  • Wang X, Yang Y, Dong Z, Zhang C (2009) Responses of dune activity and desertification in China to global warming in the twenty-first century. Global Planet Change 67:167–185

    Google Scholar 

  • Wei X, Kimmins JP, Peel K, Steen O (2011) Mass and nutrients in woody debris in harvested and wildfire-killed lodgepole pine forests in the central interior of British Columbia. Can J For Res 27:148–155

    Google Scholar 

  • Weng YC, Fujiwara T, Houng HJ, Sun CH, Li WY, Kou YW (2015) Management of landfill reclamation with regard to biodiversity preservation, global warming mitigation and landfill mining: experiences from the Asia-Pacific region. J Clean Product 104:364–373

    Google Scholar 

  • Wiens J, Fargione J, Hill J (2011) Biofuels and biodiversity. Ecol Appl 21:1085–1095

    Google Scholar 

  • Williams M (2000) Dark ages and dark areas: Global deforestation in the deep past. J Historic Geograp 26:28–46. https://doi.org/10.1006/jhge.1999.0189

    Article  Google Scholar 

  • Wood MJ, Carling PA, Moffat AJ (2003) Reduced ground disturbance during mechanized forest harvesting on sensitive soils in the UK. Forestry 76(3):345–361

    Google Scholar 

  • Wong KH, Cheung PCK (2000) Nutritional evaluation of some subtropical red and green seaweeds: Part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71(4):475–482. https://doi.org/10.1016/S0308-8146(00)00175-8

    Article  CAS  Google Scholar 

  • Worqlul AW, Dile YT, Jeong J, Adimassu Z, Lefore N, Gerik T, Srinivasan R, Clarke N (2019) Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana. Comput Electron Agric 157:110–125. https://doi.org/10.1016/j.compag.2018.12.040

    Article  Google Scholar 

  • Wuehlisch G (2011) Evidence for nitrogen-fixation in the salicaceae family. Tree Planters’ Notes 54(20):38–41

    Google Scholar 

  • WWF (2016) Mapping study on cascading use of wood products. WWF Technical Report., pp.60. Worldwide Fund for Nature, Gland, Switzerland. Retrieved 12 April 2020. Available at https://d2ouvy59p0dg6k.cloudfront.net/downloads/wwf_mondi_cascading_use_of_wood_final_web.pdf

  • Xu F, Li Y, Ge X, Yang L, Li Y (2018) Anaerobic digestion of food waste – Challenges and opportunities. Biores Technol 247:1047–1058

    CAS  Google Scholar 

  • Yan SH, Song W, Guo JY (2017) Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems: a review. Crit Rev Biotechnol 37(2):218–228

    Google Scholar 

  • Yang YX, Lu HL, Zhan SS, Deng T, Lin QQ, Wang SZ, Yang XH, Qiu RL (2013) Using Kenaf (Hibiscus Cannabinus) to Reclaim Multi-Metal Contaminated Acidic Soil. Ying Yong Sheng Tai Xue Bao 24(3):832–838 [Article in Chinese]

  • Yates MR, Claire YB (2013) Life cycle assessments of biodegradable, commercial biopolymers: a critical review. Resour Conserv Recycl 78:54–66. https://doi.org/10.1016/j.resconrec.2013.06.010

    Article  Google Scholar 

  • Yu F, Wang JM, Bai ZK (2019) Effects of surface coal mining and land reclamation on soil properties: a review. Earth-Sci Rev 17:35–40

    Google Scholar 

  • Zabel F, Putzenlechner B, Mauser W (2014) Global agricultural land resources: a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9(12):e114980

    Google Scholar 

  • Zhang X, Cai X (2011) Climate change impacts on global agricultural land availability. Environ Res Lett 6(1):014014

    Google Scholar 

  • Zhou A, Thomson E (2009) The development of biofuels in Asia. Appl Energy 86:S11–S20

    Google Scholar 

  • Zimring CA (2009) Cash for your trash: scrap recycling in America. Rutgers Univ Press, New Brunswick, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oludunsin Arodudu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arodudu, O., Holmatov, B. & Voinov, A. Ecological impacts and limits of biomass use: a critical review. Clean Techn Environ Policy 22, 1591–1611 (2020). https://doi.org/10.1007/s10098-020-01911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-020-01911-1

Keywords

Navigation