Skip to main content
Log in

Development of a dual specific growth rate-based fed-batch process for production of recombinant human granulocyte colony-stimulating factor in Pichia pastoris

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A number of limitations exist for production of human granulocyte colony-stimulating factor (G-CSF) in Pichia pastoris. In this study, two different specific growth rates (0.015 h−1, 0.01 h−1) were used sequentially in the mixed substrate feeding period during methanol induction phase to enhance the G-CSF titer in the culture broth. Necessary parameters required for implementing the feeding strategy, such as specific product yield on biomass (YP/X) and maintenance coefficient (m) on glycerol, methanol, and sorbitol were estimated using continuous culture technique. Using this strategy, for the same volumetric productivity, about 20% increase in protein titer was achieved over that obtained from the run carried out at a single pre-set value of 0.015 h−1 alone. Thus, implementation of higher specific growth rate (0.015 h−1) set during initial stages of the methanol induction phase followed by a lower specific growth rate (0.01 h−1) helped in achieving increased protein titers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    CAS  PubMed  Google Scholar 

  2. Damasceno LM, Huang CJ, Batt CA (2012) Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol 93:31–39

    PubMed  Google Scholar 

  3. Langer ES (2012) Biomanufacturing outsourcing outlook. BioPharm Int 25:15–16

    Google Scholar 

  4. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    CAS  PubMed  Google Scholar 

  5. Looser V, Bruhlmann B, Bumbak F et al (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33:1177–1193

    CAS  PubMed  Google Scholar 

  6. Stratton J, Chiruvolu V, Meagher M (1998) High cell-density fermentation. In: Higgins DR, Cregg JM (eds) Methods in molecular biology: Pichia protocols. Humana, Totowa, pp 107–120

    Google Scholar 

  7. Cos O, Ramon R, Montesinos J et al (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17

    PubMed  PubMed Central  Google Scholar 

  8. Cunha AE, Clemente JJ, Gomes R et al (2004) Methanol induction optimization for scFv antibody fragment production in Pichia pastoris. Biotechnol Bioeng 86:458–467

    CAS  PubMed  Google Scholar 

  9. Zhang W, Sinha J, Smith LA et al (2005) Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation. Biotechnol Prog 21:386–393

    CAS  PubMed  Google Scholar 

  10. Wu D, Chub J, Hao YY et al (2012) Incomplete protein disulfide bond conformation and decreased protein expression result from high cell growth during heterologous protein expression in Pichia pastoris. J Biotechnol 157:107–112

    CAS  PubMed  Google Scholar 

  11. Mallem M, Warburton S, Li F et al (2014) Maximizing recombinant human serum albumin production in a MutsPichia pastoris strain. Biotechnol Prog 30:1488–1496

    CAS  PubMed  Google Scholar 

  12. Batra J, Beri D, Mishra S (2014) Response surface methodology based optimization of β-glucosidase production from Pichia pastoris. Appl Biochem Biotechnol 172:380–393

    CAS  PubMed  Google Scholar 

  13. Celik E, Calik P, Oliver SG (2009) Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast 26:473–484

    CAS  PubMed  Google Scholar 

  14. Jungo C, Schenk J, Pasquier M et al (2007) A quantitative analysis of the benefits of mixed feeds of sorbitol and methanol for the production of recombinant avidin with Pichia pastoris. J Biotechnol 131:57–66

    CAS  PubMed  Google Scholar 

  15. Ramón R, Ferrer P, Valero F (2007) Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 130:39–46

    PubMed  Google Scholar 

  16. Niu H, Jost L, Pirlot N, Sassi H, Daukandt M, Rodriguez C, Fickers P (2013) A quantitative study of methanol/sorbitol co-feeding process of a Pichia pastoris Mut+/pAOX1-lacZ strain. Microb Cell Fact 12:1–8

    Google Scholar 

  17. Buchetics M, Dragosits M, Maurer M et al (2011) Reverse engineering of protein secretion by uncoupling of cell cycle phases from growth. Biotechnol Bioeng 108:2403–2412

    CAS  PubMed  Google Scholar 

  18. Guba SC, Sartor CA, Hutchinson R et al (1994) Granulocyte colony- stimulating factor (G-CSF) production and G-CSF receptor structure in patients with congenital neutropenia. Blood 83:1486–1492

    CAS  PubMed  Google Scholar 

  19. Crawford J, Ozer H, Stoller R et al (1991) Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Eng J Med 325:164–170

    CAS  Google Scholar 

  20. Lasnik MA, Porekar VG, Stalc A (2001) Human granulocyte colony stimulating factor (hG-CSF) expressed by methylotrophic yeast Pichia pastoris. Pflugers Arch Eur J Physiol 442:R184–R186

    CAS  Google Scholar 

  21. Bahrami A, Shojaosadati SA, Khalilzadeh R et al (2008) Two-stage glycerol feeding for enhancement of recombinant hG-CSF production in a fed-batch culture of Pichia pastoris. Biotechnol Lett 30:1081–1085

    CAS  PubMed  Google Scholar 

  22. Apte-Deshpande A, Somani S, Mandal G et al (2009) Over expression and analysis of O-glycosylated recombinant human granulocyte colony stimulating factor in Pichia pastoris using Agilent 2100 Bioanalyzer. J Biotechnol 143:44–50

    CAS  PubMed  Google Scholar 

  23. Chien S-F (2010) Cloning and expression of bioactive human granulocyte colony stimulating factor in Pichia pastoris. J Chin Chem Soc 57:850–856

    CAS  Google Scholar 

  24. Maity N, Thawani A, Sharma A et al (2016) Expression and control of codon-optimized granulocyte colony-stimulating factor in Pichia pastoris. Appl Biochem Biotechnol 78:159–172

    Google Scholar 

  25. Bai J, Swartz DJ, Protasevich II, Brouillette CG, Harrell PM, Hildebrandt E, Gasser B, Mattanovich D, Ward A, Chang G, Urbatsch IL (2011) A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PLoS ONE 3(6):e22577

    Google Scholar 

  26. D’Anjou MC, Daugulis AJ (2001) A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol Bioeng 72:1–11

    PubMed  Google Scholar 

  27. Bok SH, Demain AL (1977) An improved colorimetric assay for polyols. Anal Biochem 81:18–20

    CAS  PubMed  Google Scholar 

  28. Lin-Cereghino J, Lin-Cereghino GP (2007) Vectors and strains for expression. Pichia protocols. Humana Press, Totowa, pp 11–25

    Google Scholar 

  29. Clare JJ, Rayment FB, Ballantyne SP, Sreerkrishna K, Romanos MA (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology 9:455–460

    CAS  PubMed  Google Scholar 

  30. Aw R, Polizzi KM (2016) Liquid PTVA: a faster and cheaper alternative for generating multi-copy clones in Pichia pastoris. Microb Cell Factor 15:29

    Google Scholar 

  31. Trinh LB, Phue JN, Shiloach J (2003) Effect of methanol feeding strategies on production and yield of recombinant mouse endostatin from Pichia pastoris. Biotechnol Bioeng 82:438–444

    CAS  PubMed  Google Scholar 

  32. Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7:e39720

    PubMed  PubMed Central  Google Scholar 

  33. Hesketh AR, Castrillo JI, Sawyer T et al (2013) Investigating the physiological response of Pichia (Komagataella) pastoris GS115 to the heterologous expression of misfolded proteins using chemostat cultures. Appl Microbiol Biotechnol 97:9747–9762

    CAS  PubMed  PubMed Central  Google Scholar 

  34. d'Anjou MC, Daugulis AJ (2000) Mixed-feed exponential feeding for fed-batch culture of recombinant methylotrophic yeast. Biotechnol Lett 22:341–346

    CAS  Google Scholar 

  35. Zheng X, Zhang Y, Zhang X, Li C, Liu X, Lin Y, Liang S (2019) Fhl1p protein, a positive transcription factor in Pichia pastoris, enhances the expression of recombinant proteins. Microb Cell Factor 18:1

    Google Scholar 

  36. Whyteside G, Alcocer MJ, Kumita JR et al (2011) Native-state stability determines the extent of degradation relative to secretion of protein variants from Pichia pastoris. PLoS ONE 6:e22692

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kadowaki H, Nishitoh H (2013) Signaling pathways from the endoplasmic reticulum and their roles in disease. Genes 4(3):306–333

    PubMed  PubMed Central  Google Scholar 

  38. Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 69:169–181

    CAS  PubMed  Google Scholar 

  39. Guerfal M, Ryckaert S, Jacobs PP et al (2010) The HAC1 gene from Pichia pastoris: characterization and effect of its expression on the production of secreted, surface displayed and membrane proteins. Microb Cell Fact 9:49

    PubMed  PubMed Central  Google Scholar 

  40. Valkonen M, Penttila M, Saloheimo M (2003) Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 69:2065–2072

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Breinig F, Diehl B, Rau S et al (2006) Cell surface expression of bacterial esterase A by Saccharomyces cerevisiae and its enhancement by constitutive activation of the cellular unfolded protein response. Appl Environ Microbiol 72:7140–7147

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heyland J, Blank LM, Schmid A (2011) Quantification of metabolic limitations during recombinant protein production in Escherichia coli. J Biotechnol 155:178–184

    CAS  PubMed  Google Scholar 

  43. Potgieter TI, Kersey SD, Mallem MR et al (2010) Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnol Bioeng 106:918–927

    CAS  PubMed  Google Scholar 

  44. Schenk J, Balazs K, Jungo C et al (2008) Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by a Pichia pastoris Mut+ strain. Biotechnol Bioeng 99:368–377

    CAS  PubMed  Google Scholar 

  45. Jeong KJ, Lee SY (2001) Secretory production of human granulocyte colony-stimulating factor in Escherichia coli. Protein Exp Purif 23:311–318

    CAS  Google Scholar 

  46. Rotondaro L, Mazzanti L, Mele A et al (1997) High-level expression of a cDNA for human granulocyte colony-stimulating factor in Chinese hamster ovary cells. Mol Biotechnol 7:231–240

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from IIT Delhi under the `High impact research and technology leadership project’ (MI00806) awarded to SM and others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, A., Sahai, V. & Mishra, S. Development of a dual specific growth rate-based fed-batch process for production of recombinant human granulocyte colony-stimulating factor in Pichia pastoris. Bioprocess Biosyst Eng 44, 103–112 (2021). https://doi.org/10.1007/s00449-020-02427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02427-0

Keywords

Navigation