Skip to main content
Log in

The Influence of Atmospheric Composition on Polarization in the GEMS Spectral Region

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Sunlight is unpolarized when it enters the Earth’s atmosphere, and becomes polarized when interacting with atmospheric constituents. In the present study, the polarization state of ultraviolet-visible light in the spectral region (300–500 nm) of the Geostationary Environmental Monitoring Spectrometer (GEMS) is analyzed using the Vector Linearized Discrete Ordinate Radiative-Transfer (VLIDORT) model. The results indicate that the polarization characteristics of scattered solar light emerging from the atmosphere and observed in space vary with the amount of absorbing gases and aerosols, and with the presence or absence of clouds in the atmosphere. The degree of linear polarization (DOLP), which is related to the scattering angle of the light, is highly affected by the viewing geometry of the sun and satellite. Aerosols and clouds curtail the degree of polarization that is caused by Rayleigh scattering. The results of the model simulation for actual atmospheric conditions are assessed by comparing the Stokes fraction, i.e. the ratio of the linearly-polarized component to the total intensity, as observed from the polarization-measurement device (PMD) of the Global Ozone Monitoring Experiment-2 (GOME-2). The simulated Stokes fractions are found to be in very good agreement with the PMD observations for clear-sky regions, although some discrepancies are observed for regions with optically thin clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anderson, G.P., Clough, S.A., Kneizys, F.X., Chetwynd, J.H., Shettle, E.P.: AFGL atmospheric constituent profiles (0–120 km). No. AFGL-TR-86-0110. Air Force Geophysics Laboratory, Hanscom AFB, MA, USA (1986)

  • Bates, D.R.: Rayleigh scattering by air. Planet. Space. Sci. 32(6), 785–790 (1984)

    Article  Google Scholar 

  • Bodhaine, B.A., Wood, N.B., Dutton, E.G., Slusser, J.R.: On Rayleigh optical depth calculations. J. Atmos. Ocean. Technol. 16, 1854–1861 (1999)

    Article  Google Scholar 

  • Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  • Brion, J., Chakir, A., Charbonnier, J., Daumont, D., Parisse, C., Malicet, J.: Absorption spectra measurements for the ozone molecule in the 350–830 nm region. J. Atmos. Chem. 30(2), 291–299 (1998)

    Article  Google Scholar 

  • Cai, Z., Liu, Y., Liu, X., Chance, K., Nowlan, C.R., Lang, R., Munro, R., Suleiman, R.: Characterization and correction of Global Ozone Monitoring Experiment 2 ultraviolet measurements and application to ozone profile retrievals. J. Geophys. Res: Atmos. 117(D7) (2012)

  • Chandrasekhar, S.: Radiative Transfer. Dover publications, New York (1960)

    Google Scholar 

  • Choi, H., Lee, K.-M, Jeong, U., Liu, X., Chong, H., Kim, J., Chance, K.: On-orbit polarization correction of GEMS. In Geophysical Research Abstracts (Vol. 21) (2019)

  • Choi, W.J., Moon, K.-J., Yoon, J., Cho, A., Kim, S.K., Lee, S., Ko, D.H., Kim, J., Ahn, M.H., Kim, D.-R., Kim, S.-M., Kim, J.-Y., Nicks, D., Kim, J.-S.: Erratum: introducing the geostationary environment monitoring spectrometer. J. Appl. Remote. Sens. 12(4), 044005 (2018). https://doi.org/10.1117/1.JRS.12.044005

  • Choi, Y.S., Ho, C.H., Ahn, M.H., Kim, Y.M.: An exploratory study of cloud remote sensing capabilities of the communication, ocean and meteorological satellite (COMS) imagery. Int. J. Remote Sens. 28(21), 4715–4732 (2007)

    Article  Google Scholar 

  • Coulson, K.L.: Polarization and intensity of light in the atmosphere. A Deepak Pub. (1988)

  • Daumont, D., Brion, J., Charbonnier, J., Malicet, J.: Ozone UV spectroscopy I: absorption cross-sections at room temperature. J. Atmos. Chem. 15(2), 145–155 (1992). https://doi.org/10.1007/BF00053756

    Article  Google Scholar 

  • Dubovik, O., Li, Z., Mishchenko, M.I., Tanré, D., Karol, Y., Bojkov, B., Cairns, B., Diner, D.J., Espinosa, W.R., Goloub, P., Gu, X., Hasekamp, O., Hong, J., Hou, W., Knobelspiesse, K.D., Landgraf, J., Li, L., Litvinov, P., Liu, Y., Lopatin, A., Marbach, T., Maring, H., Martins, V., Meijer, Y., Milinevsky, G., Mukai, S., Parol, F., Qiao, Y., Remer, L., Rietjens, J., Sano, I., Stammes, P., Stamnes, S., Sun, X., Tabary, P., Travis, L.D., Waquet, F., Xu, F., Yan, C., Yin, D.: Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectrosc. Radiat. Transf. 224, 474–511 (2019)

    Article  Google Scholar 

  • Hansen, J.E.: Multiple scattering of polarized light in planetary atmospheres part II. Sunlight reflected by terrestrial water clouds. J. Atmos. Sci. 28(8), 1400–1426 (1971)

    Article  Google Scholar 

  • Hansen, J.E., Travis, L.D.: Light scattering in planetary atmospheres. Space Sci. Rev. 16(4), 527–610 (1974)

    Article  Google Scholar 

  • Hayasaka, T., Satake, S., Shimizu, A., Sugimoto, N., Matsui, I., Aoki, K., Muraji, Y.: Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds–East Asia Regional Experiment 2005 J. Geophys. Res: Atmos. 112. D22 (2007)

  • Herman, J.R., Celarier, E., Larko, D.: UV 380 nm reflectivity of the Earth's surface, clouds and aerosols. Geophys. Res: Atmos. 106(D6), 5335–5351 (2001)

    Article  Google Scholar 

  • Hersbach, H., Dee, D.: ERA5 reanalysis is in production. ECMWF Newsl. 147(7), 5–6 (2016)

    Google Scholar 

  • Hess, M., Koepke, P., Schult, I.: Optical properties of aerosols and clouds: the software package OPAC. Bull. Am. Met. Soc. 79, 831–844 (1998)

    Article  Google Scholar 

  • Ingmann, P., Veihelmann, B., Langen, J., Lamarre, D., Stark, H., Courrèges-Lacoste, G.B.: Requirements for the GMES atmosphere service and ESA's implementation concept: Sentinels-4/−5 and-5p. Remote Sens. Environ. 120, 58–69 (2012)

    Article  Google Scholar 

  • Kim, J., Jeong, U., Ahn, M.-H., Kim, J.H., Park, R.J., Lee, H., Song, C.H., Choi, Y.-S., Lee, K.-H., Yoo, J.-M., Jeong, M.-J., Park, S.K., Lee, K.-M., Song, C.-K., Kim, S.-W., Kim, Y., Kim, S.-W., Kim, M., Go, S., Liu, X., Chance, K., Miller, C.C., Al-Saadi, J., Veihelmann, B., Bhartia, P.K., Torres, O., Abad, G.G., Haffner, D.P., Ko, D.H., Lee, S.H., Woo, J.-H., Chong, H., Park, S.S., Nicks, D., Choi, W.J., Moon, K.-J., Cho, A., Yoon, J., Kim, S., Hong, H., Lee, K., Lee, H., Lee, S., Choi, M., Veefkind, P., Levelt, P., Edwards, D.P., Kang, M., Eo, M., Bak, J., Baek, K., Kwon, H.-A., Yang, J., Park, J., Han, K.M., Kim, B.-R., Shin, H.-W., Choi, H., Lee, E., Chong, J., Cha, Y., Koo, J.-H., Irie, H., Hayashida, S., Kasai, Y., Kanaya, Y., Liu, C., Lin, J., Crawford, J.H., Carmichael, G.R., Newchurch, M.J., Lefer, B.L., Herman, J.R., Swap, R.J., Lau, A.K.H., Kurosu, T.P., Jaross, G., Ahlers, B., Dobber, M., McElroy, C.T., Choi, Y.: New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS). Bull. Am. Meteorol. Soc. (2020). https://doi.org/10.1175/bams-d-18-0013.1

  • Kim, M., Kim, J., Torres, O., Ahn, C., Kim, W., Jeong, U., Go, S., Liu, X., Moon, K., Kim, D.R.: Optimal estimation-based algorithm to retrieve aerosol optical properties for GEMS measurements over Asia. Remote Sens. 10(2), 162 (2018)

    Article  Google Scholar 

  • Koelemeijer, R.B.A., Stammes, P., Hovenier, J.W., De Haan, J.F.: A fast method for retrieval of cloud parameters using oxygen a band measurements from the global ozone monitoring experiment. J. Geophys. Res. Atmos. 106(D4), 3475–3490 (2001). https://doi.org/10.1029/2000JD900657

    Article  Google Scholar 

  • Kotchenova, S.Y., Vermote, E.F., Matarrese, R., Klemm Jr., F.J.: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 45(26), 6762–6774 (2006)

    Google Scholar 

  • Lacis, A.A., Chowdhary, J., Mishchenko, M.I., Cairns, B.: Modeling errors in diffuse-sky radiation: vector vs scalar treatment. Geophys. Res. Lett. 25(2), 135–138 (1998). https://doi.org/10.1029/97GL03613

    Article  Google Scholar 

  • Liebing, P., Krijger, M., Snel, R., Bramstedt, K., Noël, S., Bovensmann, H., Burrows, J.P.: In-flight calibration of SCIAMACHY's polarization sensitivity. Atmos. Meas. Tech. 11(1), 265–289 (2018). https://doi.org/10.5194/amt-11-265-2018

    Article  Google Scholar 

  • Liu, R., Liu, Y.: Generation of new cloud masks from MODIS land surface reflectance products. Remote Sens. Environ. 133, 21–37 (2013)

    Article  Google Scholar 

  • Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., Brion, J.: Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence. J. Atmos. Chem. 21(3), 263–273 (1995). https://doi.org/10.1007/BF00696758

    Article  Google Scholar 

  • McCartney, E. J.: Optics of the atmosphere: scattering by molecules and particles. pp. 421, New York, John Wiley and Sons, Inc (1976)

  • Mishchenko, M.I., Lacis, A.A., Travis, L.D.: Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres. J. Quant. Spectrosc. Radiat. Transf. 51(3), 491–510 (1994). https://doi.org/10.1016/0022-4073(94)90149-X

    Article  Google Scholar 

  • Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Scattering, absorption, and emission of light by small particles. Cambridge university press (2002)

  • Munro, R., Lang, R., Klaes, D., Poli, G., Retscher, C., Lindstrot, R., Huckle, R., Lacan, A., Grzegorski, M., Holdak, A., Kokhanovsky, A., Livschitz, J., Eisinger, M.: The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing–an overview. Atmos. Meas. Tech. 9(3), 1279–1301.zz (2016). https://doi.org/10.5194/amt-9-1279-2016

    Article  Google Scholar 

  • Natraj, V., Boesch, H., Spurr, R.J.D., Yung, Y.L.: Retrieval of from simulated Orbiting Carbon Observatory measurements using the fast linearized R-2OS radiative transfer model. J. Geophys. Res: Atmos. 113(D11) (2008). https://doi.org/10.1029/2007JD009017

  • Prahl, S.A.: The adding-doubling method. Optical-thermal response of laser-irradiated tissue, pp. 101–129. Springer, Boston, MA (1995)

  • Penndorf, R.: Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μm and their application to atmospheric optics. J. Opt. Soc. Am. 47(2), 176–182 (1957)

    Article  Google Scholar 

  • Petty, G.W., Huang, W.: The modified gamma size distribution applied to inhomogeneous and nonspherical particles: key relationships and conversions. J. Atmos. Sci. 68(7), 1460–1473 (2011). https://doi.org/10.1175/2011JAS3645.1

    Article  Google Scholar 

  • Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.-M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.-Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Šimečková, M., Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J.: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009). https://doi.org/10.1016/j.jqsrt.2009.02.013

    Article  Google Scholar 

  • Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P.F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L.R., Campargue, A., Chance, K., Cohen, E.A., Coudert, L.H., Devi, V.M., Drouin, B.J., Fayt, A., Flaud, J.-M., Gamache, R.R., Harrison, J.J., Hartmann, J.-M., Hill, C., Hodges, J.T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R.J., Li, G., Long, D.A., Lyulin, O.M., Mackie, C.J., Massie, S.T., Mikhailenko, S., Müller, H.S.P., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E.R., Richard, C., Smith, M.A.H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G.C., Tyuterev, V.G., Wagner, G.: The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013). https://doi.org/10.1016/j.jqsrt.2013.07.002

    Article  Google Scholar 

  • Rozanov, V.V., Buchwitz, M., Eichmann, K.-U., de Beek, R., Burrows, J.P.: SCIATRAN-a new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: the pseudo-spherical version. Adv. Space Res. 29(11), 1831–1835 (2002). https://doi.org/10.1016/S0273-1177(02)00095-9

    Article  Google Scholar 

  • Rozanov, V.V., Diebel, D., Spurr, R.J.D., Burrows, J.P.: GOMETRAN: a radiative transfer model for the satellite project GOME, the plane-parallel version. J. Geophys. Res. Atmos. 102(D14), 16683–16695 (1997). https://doi.org/10.1016/S0273-1177(02)00095-9

    Article  Google Scholar 

  • Schutgens, N.A.J. and Stammes, P.: A novel approach to the polarization correction of spaceborne spectrometers. J. Geophys. Res: Atmos. 108(D7) (2003)

  • Spurr, R.J.D.: VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J. Quant. Spectosc. Radiat. Transfer. 102, 316–342 (2006). https://doi.org/10.1016/j.jqsrt.2006.05.005

    Article  Google Scholar 

  • Spurr, R.J.D., Wang, J., Zeng, J., Mishchenko, M.I.: Linearized T-matrix and Mie scattering computations. J. Quant. Spectosc. Radiat. Transfer. 113(6), 425–439 (2012)

    Article  Google Scholar 

  • Spurr, R.J.D., Kurosu, T.P., Chance, K.V.: A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval. J. Quant. Spectrosc. Radiat. Transf. 68(6), 689–735 (2001). https://doi.org/10.1016/S0022-4073(00)00055-8

    Article  Google Scholar 

  • Stam, D.M., De Haan, J.F., Hovenier, J.W., Stammes, P.: Degree of linear polarization of light emerging from the cloudless atmosphere in the oxygen a band. J. Geophys. Res. Atmos. 104(D14), 16843–16858 (1999). https://doi.org/10.1029/1999JD900159

    Article  Google Scholar 

  • Stamnes, K., Tsay, S.C., Wiscombe, W., Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27(12), 2502–2509 (1988). https://doi.org/10.1364/ao.27.002502

    Article  Google Scholar 

  • Stamnes, K., Tsay, S.C., Wiscombe, W., Laszlo, I.: DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology, pp. 112. Tech. rep., Dept. of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (2000)

  • Tilstra, L.G., Tuinder, O.N.E., Wang, P., Stammes, P.: Surface reflectivity climatologies from UV to NIR determined from earth observations by GOME-2 and SCIAMACHY. J. Geophys. Res. Atmos. 122(7), 4084–4111 (2017)

    Article  Google Scholar 

  • Twomey, S., Jacobowitz, H., Howell, H.B.: Matrix methods for multiple-scattering problems. J. Atmos. Sci. 23(3), 289–298 (1966)

    Article  Google Scholar 

  • U. S. Committee on Extension to the Standard Atmosphere.: U. S. Standard Atmosphere, 1976. National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, United States Air Force, Government Printing Office, Washington, D.C., USA, pp. 227 (1976)

  • van de Hulst, H.C.: Light Scattering by Small Particles. John Wiley & Sons. Inc., New York (1957)

    Google Scholar 

  • van de Hulst, H.C.: A New Look at Multiple Scattering. NASA Institute for Space Studies, Goddard Space Flight Center (1963)

  • van Oss, R.F., Spurr, R.J.D.: Fast and accurate 4 and 6 stream linearized discrete ordinate radiative transfer models for ozone profile retrieval. J. Quant. Spectosc. Radiat. Transfer. 75(2), 177–220 (2002). https://doi.org/10.1016/S0022-4073(01)00246-1

    Article  Google Scholar 

  • Volkamer, R., Spietz, P., Burrows, J.P., Platt, U.: High-resolution absorption cross-sections of glyoxal in the UV-vis and IR spectral ranges. J. Photochem. Photobiol. A-Chem. 172, 35–36 (2005). https://doi.org/10.1016/j.jphotochem.2004.11.011

    Article  Google Scholar 

  • Wang, P., Stammes, P., van Der, A.R., Pinardi, G., van Roozendael, M.: FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmos. Chem. Phys. 8, 6565–6576 (2008). https://doi.org/10.5194/acp-8-6565-2008

    Article  Google Scholar 

  • Zoogman, P., Liu, X., Chance, K., Sun, Q., Schaaf, C., Mahr, T., Wagner, T.: A climatology of visible surface reflectance spectra. J. Quant. Spectosc. Radiat. Transfer. 180, 3–46 (2016). https://doi.org/10.1016/j.jqsrt.2016.04.003

    Article  Google Scholar 

  • Zoogman, P., Liu, X., Suleiman, R.M., Pennington, W.F., Flittner, D.E., Al-Saadi, J.A., Hilton, B.B., Nicks, D.K., Newchurch, M.J., Carr, J.L., Janz, S.J., Andraschko, M.R., Arola, A., Baker, B.D., Canova, B.P., Chan Miller, C., Cohen, R.C., Davis, J.E., Dussault, M.E., Edwards, D.P., Fishman, J., Ghulam, A., González Abad, G., Grutter, M., Herman, J.R., Houck, J., Jacob, D.J., Joiner, J., Kerridge, B.J., Kim, J., Krotkov, N.A., Lamsal, L., Li, C., Lindfors, A., Martin, R.V., McElroy, C.T., McLinden, C., Natraj, V., Neil, D.O., Nowlan, C.R., O’Sullivan, E.J., Palmer, P.I., Pierce, R.B., Pippin, M.R., Saiz-Lopez, A., Spurr, R.J.D., Szykman, J.J., Torres, O., Veefkind, J.P., Veihelmann, B., Wang, H., Wang, J., Chance, K.: Tropospheric emissions: Monitoring of pollution (TEMPO). J. Quant. Spectosc. Radiat. Transfer. 186, 17–39 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea Ministry of Environment (MOE) through the “Public Technology Program based on Environmental Policy (2017000160002)”. The authors would like to express their gratitude to the anonymous reviewers for their valuable comments and suggestions for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Mog Lee.

Additional information

Responsible Editor: Myoung Hwan Ahn.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Lee, KM., Seo, J. et al. The Influence of Atmospheric Composition on Polarization in the GEMS Spectral Region. Asia-Pacific J Atmos Sci 57, 587–603 (2021). https://doi.org/10.1007/s13143-020-00218-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-020-00218-x

Keywords

Navigation