Skip to main content
Log in

Dependence of fast electron characteristics on the thickness of the nanocrystalline film target in intense, ultrashort laser–solid interaction

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate an interesting modulation of fast electron temperature and yield as a function of the thickness of nanocrystalline coating on a dielectric target, in femtosecond, intense laser interaction with a solid target. We measure the fast electron energy spectrum for fused silica targets coated with ultrathin, nanocrystalline Cu films with thickness ranging from 30 to 100 nm and compare them with those from a planar, uncoated polished silica surface. The fast electron temperature exhibits an unexpected dependence on the film thickness, peaking at 30 and 45 nm and falling off for films with higher thicknesses. During these experiments, the size of the Cu nanograins was kept constant and only the film thickness was varied. We find that—in the low thickness limit—the target thickness acts as an additional length scale, independent of the surface topography, and needs to be separately optimized for maximizing the generation of fast electrons from high-intensity, ultrashort laser–matter interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Gibbon, Short Pulse Laser Interactions with Matter (World Scientific Publishing Company, Singapore, 2004)

    MATH  Google Scholar 

  2. P.K. Kaw, Rev. Mod. Plasma Phys. 1, 2 (2017)

    Article  ADS  Google Scholar 

  3. M. Hegelich, S. Karsch, G. Pretzler, D. Habs, K. Witte, W. Guenther, M. Allen, A. Blazevic, J. Fuchs, J.C. Gauthier, M. Geissel, P. Audebert, T. Cowan, M. Roth, Phys. Rev. Lett. 89, 85002 (2002)

    Article  ADS  Google Scholar 

  4. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Article  ADS  Google Scholar 

  5. A. Tarasevitch, A. Orisch, D. von der Linde, P. Balcou, G. Rey, J.-P. Chambaret, U. Teubner, D. Klöpfel, W. Theobald, Phys. Rev. A 62, 23816 (2000)

    Article  ADS  Google Scholar 

  6. M. Zepf, G.D. Tsakiris, G. Pretzler, I. Watts, D.M. Chambers, P.A. Norreys, U. Andiel, A.E. Dangor, K. Eidmann, C. Gahn, A. Machacek, J.S. Wark, K. Witte, Phys. Rev. E 58, R5253 (1998)

    Article  ADS  Google Scholar 

  7. J.D. Kmetec, C.L. Gordon, J.J. Macklin, B.E. Lemoff, G.S. Brown, S.E. Harris, Phys. Rev. Lett. 68, 1527 (1992)

    Article  ADS  Google Scholar 

  8. F. Brandl, G. Pretzler, D. Habs, E. Fill, EPL Europhys. Lett. 61, 632 (2003)

    Article  ADS  Google Scholar 

  9. S.D. Baton, J.J. Santos, F. Amiranoff, H. Popescu, L. Gremillet, M. Koenig, E. Martinolli, O. Guilbaud, C. Rousseaux, M. Rabec Le Gloahec, T. Hall, D. Batani, E. Perelli, F. Scianitti, T.E. Cowan, Phys. Rev. Lett. 91, 105001 (2003)

    Article  ADS  Google Scholar 

  10. M. Manclossi, J.J. Santos, D. Batani, J. Faure, A. Debayle, V.T. Tikhonchuk, V. Malka, Phys. Rev. Lett. 96, 125002 (2006)

    Article  ADS  Google Scholar 

  11. J.J. Santos, F. Amiranoff, S.D. Baton, L. Gremillet, M. Koenig, E. Martinolli, M. Rabec Le Gloahec, C. Rousseaux, D. Batani, A. Bernardinello, G. Greison, T. Hall, Phys. Rev. Lett. 89, 025001 (2002)

    Article  ADS  Google Scholar 

  12. H. Hamster, A. Sullivan, S. Gordon, R.W. Falcone, Phys. Rev. E 49, 671 (1994)

    Article  ADS  Google Scholar 

  13. K.A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, Y. Honda, S. Okuda, Rev. Sci. Instrum. 76, 13507 (2004)

    Article  Google Scholar 

  14. B. Bezzerides, S.J. Gitomer, D.W. Forslund, Phys. Rev. Lett. 44, 651 (1980)

    Article  ADS  Google Scholar 

  15. S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  16. F.N. Beg, A.R. Bell, A.E. Dangor, C.N. Danson, A.P. Fews, M.E. Glinsky, B.A. Hammel, P. Lee, P.A. Norreys, M. Tatarakis, Phys. Plasmas 4, 447 (1997)

    Article  ADS  Google Scholar 

  17. P.P. Rajeev, P. Taneja, P. Ayyub, A.S. Sandhu, G.R. Kumar, Phys. Rev. Lett. 90, 115002 (2003)

    Article  ADS  Google Scholar 

  18. S. Kahaly, S.K. Yadav, W.M. Wang, S. Sengupta, Z.M. Sheng, A. Das, P.K. Kaw, G.R. Kumar, Phys. Rev. Lett. 101, 145001 (2008)

    Article  ADS  Google Scholar 

  19. S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A.D. Lad, V. Narayanan, P. Ayyub, G.R. Kumar, J. Zheng, Z.M. Sheng, Phys. Rev. B Condens. Matter Mater. Phys. 83, 1 (2011)

    Article  Google Scholar 

  20. P. Kumar Singh, G. Chatterjee, A.D. Lad, A. Adak, S. Ahmed, M. Khorasaninejad, M.M. Adachi, K.S. Karim, S.S. Saini, A.K. Sood, G. Ravindra Kumar, Appl. Phys. Lett. 100, 244104 (2012)

    Article  ADS  Google Scholar 

  21. P.K. Singh, I. Chakraborty, G. Chatterjee, A. Adak, A.D. Lad, P. Brijesh, P. Ayyub, G.R. Kumar, Phys. Rev. Spec. Top. Accel. Beams 16, 1 (2013)

    Google Scholar 

  22. D. Margarone, O. Klimo, I.J. Kim, J. Prokůpek, J. Limpouch, T.M. Jeong, T. Mocek, J. Pšikal, H.T. Kim, J. Proška, K.H. Nam, L. Štolcová, I.W. Choi, S.K. Lee, J.H. Sung, T.J. Yu, G. Korn, Phys. Rev. Lett. 109, 1 (2012)

    Article  Google Scholar 

  23. M. Dalui, W.-M. Wang, T.M. Trivikram, S. Sarkar, S. Tata, J. Jha, P. Ayyub, Z.M. Sheng, M. Krishnamurthy, Sci. Rep. 5, 11930 (2015)

    Article  ADS  Google Scholar 

  24. P.P. Rajeev, P. Ayyub, S. Bagchi, G.R. Kumar, Opt. Lett. 29, 2662 (2004)

    Article  ADS  Google Scholar 

  25. T. Ceccotti, V. Floquet, A. Sgattoni, A. Bigongiari, O. Klimo, M. Raynaud, C. Riconda, A. Heron, F. Baffigi, L. Labate, Phys. Rev. Lett. 111, 185001 (2013)

    Article  ADS  Google Scholar 

  26. L. Fedeli, A. Sgattoni, G. Cantono, A. Macchi, Appl. Phys. Lett. 110, 51103 (2017)

    Article  ADS  Google Scholar 

  27. A. Sgattoni, P. Londrillo, A. Macchi, M. Passoni, Phys. Rev. E 85, 36405 (2012)

    Article  ADS  Google Scholar 

  28. I. Prencipe, A. Sgattoni, D. Dellasega, L. Fedeli, L. Cialfi, I.W. Choi, I.J. Kim, K.A. Janulewicz, K.F. Kakolee, H.W. Lee, Plasma Phys. Control Fusion 58, 34019 (2016)

    Article  Google Scholar 

  29. R. Banerjee, E.A. Sperling, G.B. Thompson, H.L. Fraser, S. Bose, P. Ayyub, Appl. Phys. Lett. 82, 4250 (2003)

    Article  ADS  Google Scholar 

  30. S.K. Mohanta, S.N. Mishra, S. Sarkar, P. Ayyub, Phys. Rev. B 89, 224410 (2014)

    Article  ADS  Google Scholar 

  31. S. Bagchi, P. Prem Kiran, M.K. Bhuyan, S. Bose, P. Ayyub, M. Krishnamurthy, G. Ravindra Kumar, Appl. Phys. Lett. 90, 14 (2007)

    Article  Google Scholar 

  32. D. Strickland, G. Mourou, Opt. Commun. 55, 447 (1985)

    Article  ADS  Google Scholar 

  33. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  34. P.K. Singh, Y.Q. Cui, A. Adak, A.D. Lad, G. Chatterjee, P. Brijesh, Z.M. Sheng, G.R. Kumar, Sci. Rep. 5, 17870 (2015)

    Article  ADS  Google Scholar 

  35. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen, Phys. Rev. Lett. 77, 99 (1996)

    Article  ADS  Google Scholar 

  36. H.A. Baldis, C.J. Walsh, Phys. Fluids 26, 1364 (1983)

    Article  ADS  Google Scholar 

  37. W. Seka, B.B. Afeyan, R. Boni, L.M. Goldman, R.W. Short, K. Tanaka, T.W. Johnston, Phys. Fluids 28, 2570 (1985)

    Article  ADS  Google Scholar 

  38. L. Fedeli, A. Formenti, L. Cialfi, A. Pazzaglia, M. Passoni, Sci. Rep. 8, 3834 (2018)

    Article  ADS  Google Scholar 

  39. S. Großmann, D. Friedrich, M. Karolak, R. Kullock, E. Krauss, M. Emmerling, G. Sangiovanni, B. Hecht, Phys. Rev. Lett. 122, 246802 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

GRK acknowledges partial support from the J.C. Bose Fellowship grant JCB-037/2010 from the Science and Engineering Research Board, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ravindra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, D., Adak, A., Sarkar, S. et al. Dependence of fast electron characteristics on the thickness of the nanocrystalline film target in intense, ultrashort laser–solid interaction. Appl. Phys. B 126, 151 (2020). https://doi.org/10.1007/s00340-020-07499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07499-0

Navigation