Skip to main content
Log in

Copper/Zinc Ratio Can Be a Marker to Diagnose Ectopic Pregnancy and Is Associated with the Oxidative Stress Status of Ectopic Pregnancy Cases

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It was aimed to evaluate serum zinc and copper levels and oxidative stress parameters in ectopic pregnancy cases, healthy pregnant women, and healthy non-pregnant women. In this cross-sectional case-control study, 30 patients diagnosed with tubal ectopic pregnancy in the gynecology clinic of a tertiary hospital constituted the study group. A healthy pregnant control group (n = 30) was formed of age, body mass index (BMI), and gestational week-matched subjects, and a healthy non-pregnant control group (n = 30) was formed of age and BMI-matched women. The groups were compared in terms of demographic characteristics and laboratory parameters including serum zinc (Zn) level, serum copper (Cu) level, serum malondialdehyde (MDA) level, serum catalase (CAT) activity, serum glutathione peroxidase (GPX) activity, and serum superoxide dismutase (SOD) activity. The groups were similar in respect of demographic characteristics. In the ectopic pregnancy group, serum GPX activity and Cu level were significantly lower, and serum SOD and CAT activity and Zn and MDA levels were higher compared with those of the healthy pregnant and healthy non-pregnant groups. The Cu/Zn ratio showed a significant, positive correlation with the serum GPX activity and serum progesterone level and a negative correlation with serum SOD and CAT activity. When 1.14 was taken as the cutoff value, sensitivity and specificity of the Cu/Zn ratio to determine ectopic pregnancy were 73.3% and 80.0%, respectively. Comparing the area under curve (AUC) in the ROC (receiver operating characteristic) curve analysis, the Cu/Zn ratio was determined to be more valuable than the Cu or Zn values alone in predicting ectopic pregnancy. In correlation analysis, serum beta hCG level showed a negative correlation with SOD and CAT activities and Zn levels. Serum progesterone level showed a negative correlation with serum CAT and SOD activities and MDA and zinc levels and a positive correlation with serum GPX activity and serum copper level (p < 0.05 for all). The current study can be considered of value as the first study in literature to show a significantly lower serum Zn level and higher serum Cu level in ectopic pregnancy cases compared with healthy pregnant control cases. This is also the first study to have revealed an association between the serum Cu/Zn ratio, oxidative status, and ectopic pregnancy. Furthermore, the serum Cu/Zn ratio was found to be useful in the diagnosis of ectopic pregnancy cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Shaw JL, Dey SK, Critchley HO, Horne AW (2010) Current knowledge of the aetiology of human tubal ectopic pregnancy. Hum Reprod Update 16(4):432–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shao R (2010) Understanding the mechanisms of human tubal ectopic pregnancies: new evidence from knockout mouse models. Hum Reprod (Oxford, England) 25(3):584–587

    Article  CAS  Google Scholar 

  3. Rana P, Kazmi I, Singh R, Afzal M, Al-Abbasi FA, Aseeri A, Singh R, Khan R, Anwar F (2013) Ectopic pregnancy: a review. Arch Gynecol Obstet 288(4):747–757

    Article  PubMed  Google Scholar 

  4. Rausch ME, Barnhart KT (2012) Serum biomarkers for detecting ectopic pregnancy. Clin Obstet Gynecol 55(2):418–423

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ashworth CJ, Antipatis C (2001) Micronutrient programming of development throughout gestation. Reproduction (Cambridge, England) 122(4):527–535

    Article  CAS  Google Scholar 

  6. Wolonciej M, Milewska E, Roszkowska-Jakimiec W (2016) Trace elements as an activator of antioxidant enzymes. Postepy Hig Med Dosw (Online) 70(0):1483–1498

    Article  Google Scholar 

  7. Hordyjewska A, Popiołek Ł, Kocot J (2014) The many “faces” of copper in medicine and treatment. Biometals 27(4):611–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118

    Article  CAS  PubMed  Google Scholar 

  9. Wilson RL, Grieger JA, Bianco-Miotto T, Roberts CT (2016) Association between maternal zinc status, dietary zinc intake and pregnancy complications: a systematic review. Nutrients 8(10):641

    Article  PubMed Central  CAS  Google Scholar 

  10. Al-Gubory KH, Fowler PA, Garrel C (2010) The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 42(10):1634–1650

    Article  CAS  PubMed  Google Scholar 

  11. Lopes AS, Lane M, Thompson JG (2010) Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod (Oxford, England) 25(11):2762–2773

    Article  CAS  Google Scholar 

  12. Harvey AJ, Kind KL, Thompson JG (2002) REDOX regulation of early embryo development. Reproduction (Cambridge, England) 123(4):479–486

    Article  CAS  Google Scholar 

  13. Lu J, Wang Z, Cao J, Chen Y, Dong Y (2018) A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol : RB&E 16(1):80

    Article  CAS  Google Scholar 

  14. Orsi NM, Leese HJ (2001) Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev 59(1):44–53

    Article  CAS  PubMed  Google Scholar 

  15. Perrone S, Laschi E, Buonocore G (2019) Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic Biol Med 142:23–31

    Article  CAS  PubMed  Google Scholar 

  16. Hilali N, Aksoy N, Vural M, Camuzcuoglu H, Taskin A (2013) Oxidative status and serum prolidase activity in tubal ectopic pregnancy. JPMA J Pak Med Assoc 63(2):169–172

    PubMed  Google Scholar 

  17. SUCU S, BADEMKIRAN MH, ÖZCAN HÇ, KÖMÜRCÜ Ö, BAYRAMOĞLU D, BALAT Ö (2018) Oxidative stress markers in tubal ectopic pregnancy. J Clin Obstet Gynecol 28(1):9–13

    Article  Google Scholar 

  18. Bozkaya G, Karaca I, Fenercioglu O, Yildirim Karaca S, Bilgili S, Uzuncan N (2019) Evaluation of maternal serum ischemia modified albumin and total antioxidant status in ectopic pregnancy. J Matern Fetal Neonatal Med 32(12):2003–2008

    Article  CAS  PubMed  Google Scholar 

  19. Iqbal A, Saeed M, Amjad S (2018) A cross-sectional research: incidence of tubal ectopic pregnancy versus prolidase activity and oxidative stress: one year research experience at Service Hospital, Lahore. Indo Am J Pharm Sci 5(5):4533–4537

    CAS  Google Scholar 

  20. Dialani V, Levine D (2004) Ectopic pregnancy: a review. Ultrasound Q 20(3):105–117

    Article  PubMed  Google Scholar 

  21. Smith JC Jr, Butrimovitz GP, Purdy WC (1979) Direct measurement of zinc in plasma by atomic absorption spectroscopy. Clin Chem 25(8):1487–1491

    Article  CAS  PubMed  Google Scholar 

  22. Evenson MA (1988) Measurement of copper in biological samples by flame or electrothermal atomic absorption spectrometry. Methods Enzymol 158:351–357

    Article  CAS  PubMed  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  24. Beutler E (1975) A manual of biochemical methods, New York, pp 62–94

  25. Beutler E (1975) Red cell metabolism 2nd. Grune and Stratton Company, New York, pp 261–265

    Google Scholar 

  26. Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58(6):61–97

    CAS  PubMed  Google Scholar 

  27. Kong BY, Duncan FE, Que EL, Xu Y, Vogt S, O'Halloran TV, Woodruff TK (2015) The inorganic anatomy of the mammalian preimplantation embryo and the requirement of zinc during the first mitotic divisions. Dev Dyn 244(8):935–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suzuki T, Yoshida N, Suzuki E, Okuda E, Perry AC (2010) Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development (Cambridge, England) 137(16):2659–2669

    Article  CAS  Google Scholar 

  29. Bernhardt ML, Kong BY, Kim AM, O'Halloran TV, Woodruff TK (2012) A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes. Biol Reprod 86(4):114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Vidal F, Hidalgo J (2008) Effect of zinc and copper on preimplantation mouse embryo development in vitro and metallothionein levels. Zygote 1(3):225–229

    Article  Google Scholar 

  31. Tamate K, Sengoku K, Ishikawa M (1995) The role of superoxide dismutase in the human ovary and fallopian tube. J Obstet Gynaecol (Tokyo, Japan) 21(4):401–409

    Article  CAS  Google Scholar 

  32. Matsubayashi H, Kitaya K, Yamaguchi K, Nishiyama R, Takaya Y, Ishikawa T (2017) Is a high serum copper concentration a risk factor for implantation failure? BMC Res Notes 10(1):387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Guo C-H, Chen P-C, Yeh M-S, Hsiung D-Y, Wang C-L (2011) Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin Biochem 44(4):275–280

    Article  CAS  PubMed  Google Scholar 

  34. Rafeeinia A, Tabandeh A, Khajeniazi S, Marjani AJ (2014) Serum copper, zinc and lipid peroxidation in pregnant women with preeclampsia in gorgan. Open Biochem J 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cetin I, Berti C, Calabrese S (2010) Role of micronutrients in the periconceptional period. Hum Reprod Update 16(1):80–95

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Park J-S, Deng J-H, Bai Y (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38(5-6):283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guerin P, El Mouatassim S, Menezo Y (2001) Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 7(2):175–189

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Zeng L, Xia T, Li S, Yan T, Wu S, Qiu G, Liu Z (2015) Toward a biomarker of oxidative stress: a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Anal Chem 87(16):8052–8056

    Article  CAS  PubMed  Google Scholar 

  39. Al-Gubory KH, Bolifraud P, Germain G, Nicole A, Ceballos-Picot I (2004) Antioxidant enzymatic defence systems in sheep corpus luteum throughout pregnancy. Reproduction (Cambridge, England) 128(6):767–774

    Article  CAS  Google Scholar 

  40. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ (2000) Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol 157(6):2111–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qanungo S, Mukherjea M (2000) Ontogenic profile of some antioxidants and lipid peroxidation in human placental and fetal tissues. Mol Cell Biochem 215(1-2):11–19

    Article  CAS  PubMed  Google Scholar 

  42. Kim IH, Van Langendonckt A, Van Soom A, Vanroose G, Casi AL, Hendriksen PJ, Bevers MM (1999) Effect of exogenous glutathione on the in vitro fertilization of bovine oocytes. Theriogenology 52(3):537–547

    Article  CAS  PubMed  Google Scholar 

  43. Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15(7):1957–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alev Özer.

Ethics declarations

Informed consent was obtained from all the participants, and the Institutional Ethics Committee approved the study (approval number: 05-26.09.2018). The study was conducted in compliance with the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tok, A., Özer, A., Baylan, F.A. et al. Copper/Zinc Ratio Can Be a Marker to Diagnose Ectopic Pregnancy and Is Associated with the Oxidative Stress Status of Ectopic Pregnancy Cases. Biol Trace Elem Res 199, 2096–2103 (2021). https://doi.org/10.1007/s12011-020-02327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02327-0

Keywords

Navigation