Skip to main content
Log in

Yeasts Influence Host Selection and Larval Fitness in Two Frugivorous Carpophilus Beetle Species

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We explored how gut-associated yeasts influence olfactory behaviour and resource use in two pest species of Carpophilus beetle that co-exist in Australian stone fruits. Molecular analysis of yeasts isolated from the gut of C. davidsoni (prefers ripe fruits) and C. hemipterus (prefers overripe and rotting fruits) revealed that the predominant species were Pichia kluyveri and Hanseniaspora guilliermondii. In olfactory attraction and oviposition trials, adult beetles preferred H. guilliermondii over P. kluyveri, and follow up GC-MS analysis revealed unambiguous differences between the odour profiles of these yeasts. In contrast to behavioural trials, larval feeding assays showed that fruit substrates inoculated with P. kluyveri yielded significantly faster development times, higher pupal mass, and a greater number of adult beetles, compared to H. guilliermondii — in other words, the lesser preferred yeast (by foraging adults) was more suitable for larval survival. Moreover, whilst larvae of both species survived to adulthood when fed solely on P. kluyveri (i.e. without a fruit substrate), only larvae of C. davidsoni could develop on H. guilliermondii; and only C. davidsoni reached adulthood feeding on a yeast-free fruit substrate. We discuss how these findings may relate to adaptations towards early colonising of fruits by C. davidsoni, enabling differences in resource use and potentially resource partitioning in the two beetles. More broadly, consideration of microbial interactions might help develop host selection theory. Our results could pave the way to more powerful attractants to mass-trap and monitor Carpophilus pests in fruit orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A (2014) The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc R Soc B 281(1781):20132840

    PubMed  PubMed Central  Google Scholar 

  • Balagawi S, Drew RA, Clarke AR (2013) Simultaneous tests of the preference-performance and phylogenetic conservatism hypotheses: is either theory useful? Arthropod Plant Interact 7(3):299–313

    Google Scholar 

  • Ballabeni P, Wlodarczyk M, Rahier M (2001) Does enemy-free space for eggs contribute to a leaf beetle’s oviposition preference for a nutritionally inferior host plant? Funct Ecol 15(3):318–324. https://doi.org/10.1046/j.1365-2435.2001.00529.x

    Article  Google Scholar 

  • Bartelt RJ, Hossain MS (2006) Development of synthetic food-related attractant for Carpophilus davidsoni and its effectiveness in the stone fruit orchards in southern Australia. J Chem Ecol 32(10):2145–2162. https://doi.org/10.1007/s10886-006-9135-7

    Article  PubMed  CAS  Google Scholar 

  • Bartelt RJ, Hossain MS (2010) Chemical ecology of Carpophilus sap beetles (Coleoptera: Nitidulidae) and development of an environmentally friendly method of crop protection. Terr Arth Rev 3(1):29–61

    Google Scholar 

  • Batista NN, Ramos CL, Ribeiro DD, Pinheiro ACM, Schwan RF (2015) Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT- Food Sci Technol 63(1):221–227

    CAS  Google Scholar 

  • Beaulieu M, Franke K, Fischer K (2017) Feeding on ripening and over-ripening fruit: interactions between sugar, ethanol and polyphenol contents in a tropical butterfly. J Exp Biol 220(17):3127–3134

    PubMed  Google Scholar 

  • Becher PG et al (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26(4):822–828. https://doi.org/10.1111/j.1365-2435.2012.02006.x

  • Bellutti N, Gallmetzer A, Innerebner G, Schmidt S, Zelger R, Koschier EH (2018) Dietary yeast affects preference and performance in Drosophila suzukii. J Pest Sci 91(2):651–660

    Google Scholar 

  • Biere A, Bennett AE (2013) Three-way interactions between plants, microbes and insects. Funct Ecol 27(3):567–573

    Google Scholar 

  • Billeter J-C, Wolfner MF (2018) Chemical Cues that Guide Female Reproduction in Drosophila Melanogaster. J Chem Ecol 44(9):750–769

    PubMed  CAS  PubMed Central  Google Scholar 

  • Birke A, Aluja M (2018) Do mothers really know best? Complexities in testing the preference-performance hypothesis in polyphagous frugivorous fruit flies. Bull Entomol Res 108(5):674–684

    PubMed  CAS  Google Scholar 

  • Blount BA, Driessen MR, Ellis T (2016) GC Preps: Fast and Easy Extraction of Stable Yeast Genomic DNA. Sci Rep 6:26863

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cadez N, Poot GA, Raspor P, Smith MT (2003) Hanseniaspora meyeri sp. nov., Hanseniaspora clermontiae sp. nov., Hanseniaspora lachancei sp. nov. and Hanseniaspora opuntiae sp. nov., novel apiculate yeast species. Int J Syst Evol Microbiol 53(5):1671–1680

  • Christiaens JF et al (2014) The Fungal Aroma Gene ATF1 Promotes Dispersal of Yeast Cells through Insect Vectors. Cell Rep 9(2):425–432. https://doi.org/10.1016/j.celrep.2014.09.009

  • Cunningham J (2012) Can mechanism help explain insect host choice? J Evol Biol 25(2):244–251

  • Cunningham JP, Carlsson MA, Villa TF, Dekker T, Clarke AR (2016) Do fruit ripening volatiles enable resource specialism in polyphagous fruit flies? J Chem Ecol 42(9):931–940

    PubMed  CAS  Google Scholar 

  • Douglas AE (2013) Microbial brokers of insect-plant interactions revisited. J Chem Ecol 39(7):952–961

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dowd PF (1987) A labor-saving method for rearing the driedfruit beetle (Coleoptera: Nitidulidae) on pinto bean-based diet. J Econ Entomol 80(6):1351–1353

    Google Scholar 

  • Duetz W, Bouwmeester H, Van Beilen J, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61(4):269–277

    PubMed  CAS  Google Scholar 

  • Dweck HK et al (2013) Olfactory preference for egg laying on citrus substrates in Drosophila. Curr Biol 23(24):2472–2480

    PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    PubMed  CAS  PubMed Central  Google Scholar 

  • El-Sayed A, Suckling D, Wearing C, Byers J (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99(5):1550–1564

    PubMed  CAS  Google Scholar 

  • Ganter PF (2006) Yeast and invertebrate associations. In: Rosa CA, bor PG (eds) The Yeast Handbook – Biodiversity and Ecophysiology of Yeasts. Springer, Heidelber, pp 303–370

    Google Scholar 

  • Gonzalez F (2014) Symbiosis between yeasts and insects. Crop Production Science:3

  • Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference–performance relationships in phytophagous insects. Ecol Lett 13(3):383–393

    PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamby KA, Hernandez A, Boundy-Mills K, Zalom FG (2012) Associations of yeasts with spotted-wing drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl Environ Microbiol 78(14):4869–4873. https://doi.org/10.1128/AEM.00841-12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hammer Ř, Harper D, Ryan P (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Hofstetter RW, Dinkins-Bookwalter J, Davis TS, Klepzig KD (2015) Symbiotic associations of bark beetles Bark Beetles. Elsevier, p 209–245

  • Hossain M, Williams D (2003) Phenology of carpophilus beetle populations (Coleoptera: Nitidulidae, Carpophilus spp.) in a fruit dump in northern Victoria. Aust J Exp Agric 43(10):1275–1279

    Google Scholar 

  • Hossain MS, Bartelt RJ, Hossain MA, Williams DG, Chandra S (2008) Longevity of pheromone and co-attractant lures used in attract‐and‐kill stations for control of Carpophilus spp. Entomol Exp Appl 129(2):148–156

    CAS  Google Scholar 

  • Hossain M, Rettke M, Williams D, Hossain A (2009) Predominant Carpophilus spp. (Coleoptera: Nitidulidae) associated with damaged apricot fruit on trees. Gen Appl Entomol 38:43–48

    Google Scholar 

  • James DG, Vogele B (2000) Development and survivorship of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus humeralis (F.)(Coleoptera: Nitidulidae) over a range of constant temperatures. Aust J Entomol 39(3):180–184

    Google Scholar 

  • James DG, Faulder RJ, Bartelt RJ (1995) Fauna and Seasonal Abundance of Carpophilus spp.(Coleoptera: Nitidulidae) in Four Stone Fruit Growing Regions of Southeastern Australia as Determined by Pheromone-trapping. Austral Entomol 34(4):327–333

    Google Scholar 

  • James DG, Faulder RJ, Vogele B, Bartelt RJ, Moore CJ (1997) Phenology of Carpophilus spp.(Coleoptera: Nitidulidae) in stone fruit orchards as determined by pheromone trapping: implications for prediction of crop damage. Austral Entomol 36(2):165–173

    Google Scholar 

  • Janisiewicz W, Kurtzman C, Buyer J (2010) Yeasts associated with nectarines and their potential for biological control of brown rot. Yeast 27(7):389–398

    PubMed  CAS  Google Scholar 

  • Keesey IW, Knaden M, Hansson BS (2015) Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J Chem Ecol 41(2):121–128. https://doi.org/10.1007/s10886-015-0544-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    PubMed  CAS  Google Scholar 

  • Klepzig KD, Adams A, Handelsman J, Raffa K (2009) Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ Entomol 38(1):67–77

    PubMed  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol:msw054

  • Kurtzman C, Robnett C (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5’end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35(5):1216–1223

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lachance M-A, Bowles JM (2002) Metschnikowia arizonensis and Metschnikowia dekortorum, two new large-spored yeast species associated with floricolous beetles. FEMS Yeast Res 2(2):81–86

    PubMed  CAS  Google Scholar 

  • Lachance M-A, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1(1):1–8

    PubMed  CAS  Google Scholar 

  • Lenth R (2018) Emmeans: Estimated marginal means, aka least-squares means. R package version 1(1)

  • Leschen R, Marris J (2005) Carpophilus (Coleoptera: Nitidulidae) of New Zealand with notes on Australian species. Landc Res Contract Rep: LCO 405/153:1–40

    Google Scholar 

  • Levins R, MacArthur R (1969) An hypothesis to explain the incidence of monophagy. Ecology 50(5):910–911

    Google Scholar 

  • Macarthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101(921):377–385

  • Mansfield C, Hossain M (2004) The attractiveness of different fermenting food odours to’Carpophilus’ spp.(Coleoptera: Nitidulidae). Gen Appl Ent 33:41–44

    Google Scholar 

  • Mayhew PJ (2001) Herbivore host choice and optimal bad motherhood. Trends Ecol Evol 16(4):165–167. https://doi.org/10.1016/s0169-5347(00)02099-1

    Article  PubMed  Google Scholar 

  • McKenzie J, Parsons P (1972) Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans. Oecologia 10(4):373–388

    PubMed  CAS  Google Scholar 

  • Miller M, Mrak E (1953) Yeasts associated with dried-fruit beetles in figs. Appl Microbiol 1(4):174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morais P, Rosa C, Mendoncahagler L, Hagler A (1992) Apiculate yeasts with high growth temperatures isolated from Drosophila in Rio-De-Janeiro, RJ, Brazil. Rev De Microbiol 23(3):163–166

    Google Scholar 

  • Morais PB, Martins MB, Klaczko LB, Mendonça-Hagler LC, Hagler AN (1995) Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl Environ Microbiol 61(12):4251–4257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mori BA et al (2017) Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J Appl Ecol 54(1):170–177

    Google Scholar 

  • Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC (2016) Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 6:22587

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nout MJRa, Bartelt RJ (1998) Attraction of a flying nitidulid (Carpophilus humeralis) to volatiles produced by yeasts grown on sweet corn and a corn-based medium. J Chem Ecol 24(7):1217–1239

    CAS  Google Scholar 

  • Paiva MR, Kiesel K (1985) Field responses of Trypodendron spp.(Col., Scolytidae) to different concentrations of lineatin and α-pinene. Zeitschrift für angewandte Entomologie 99(1‐5):442–448

    CAS  Google Scholar 

  • Palanca L, Gaskett AC, Gunther CS, Newcomb RD, Goddard MR (2013) Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS One 8(9):e75332. https://doi.org/10.1371/journal.pone.0075332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Paul JS, Tiwari K, Jadhav S (2015) Long term preservation of commercial important fungi in glycerol at 4 C. Int J Biol Chem 9(2):79–85

    CAS  Google Scholar 

  • Pietrowski GdAM, dos Santos CMEr, Sauer E, Wosiacki G, Nogueira A (2012) Influence of fermentation with Hanseniaspora sp. yeast on the volatile profile of fermented apple. J Agric Food Chem 60(39):9815–9821

    Google Scholar 

  • Piper AM, Farnier K, Linder T, Speight R, Cunningham JP (2017) Two gut-associated yeasts in a tephritid fruit fly have contrasting effects on adult attraction and larval survival. J Chem Ecol 43(9):891–901

    PubMed  CAS  Google Scholar 

  • Quan AS, Eisen MB (2018) The ecology of the Drosophila-yeast mutualism in wineries. PloS one 13(5):e0196440

    PubMed  PubMed Central  Google Scholar 

  • R CT (2019) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna

    Google Scholar 

  • Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z (2015) Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 5:14059. https://doi.org/10.1038/srep14059

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scheirs J, De Bruyn L (2002) Integrating optimal foraging and optimal oviposition theory in plant–insect research. Oikos 96(1):187–191

    Google Scholar 

  • Scheirs J, De Bruyn L, Verhagen R (2000) Optimization of adult performance determines host choice in a grass miner. Proc R Soc B 267(1457):2065–2069

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spencer DM, Spencer J, De Figueroa L, Heluane H (1992) Yeasts associated with rotting citrus fruits in Tucumán, Argentina. Mycol Res 96(10):891–892

    Google Scholar 

  • Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS One 7(7):e42238. https://doi.org/10.1371/journal.pone.0042238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Starmer WT, Fogleman JC (1986) Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol 12(5):1037–1055

    PubMed  CAS  Google Scholar 

  • Starmer WT, Ganter PF, Aberdeen V, Lachance M-A, Phaff HJ (1987) The ecological role of killer yeasts in natural communities of yeasts. Can J Microbiol 33(9):783–796

    PubMed  CAS  Google Scholar 

  • Stefanini I (2018) Yeast-insect associations: It takes guts. Yeast 35(4):315–330. https://doi.org/10.1002/yea.3309

    Article  PubMed  CAS  Google Scholar 

  • Stockel J, Sureau F (1981) Monitoring for the Angoumois grain moth in corn. In: Mitchell E (ed) Management of insect pests with semiochemicals. Springer Boston MA, p 63–73

  • Suh S-O, Blackwell M (2004) Three new beetle-associated yeast species in the Pichia guilliermondii clade. FEMS Yeast Res 5(1):87–95

    PubMed  CAS  Google Scholar 

  • Suh S-O, McHUGH JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109(3):261–265

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson JN (1988) Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl 47(1):3–14

    Google Scholar 

  • Urbina H, Schuster J, Blackwell M (2013) The gut of Guatemalan passalid beetles: a habitat colonized by cellobiose-and xylose-fermenting yeasts. Fungal Ecol 6(5):339–355

    Google Scholar 

  • Vacek DC, Starmer WT, Heed WB (1979) Relevance of the ecology of citrus yeasts to the diet of Drosophila. Microb Ecol 5(1):43–49

    PubMed  CAS  Google Scholar 

  • Vadkertiová R, Molnárová J, Vránová D, Sláviková E (2012) Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can J Microbiol 58(12):1344–1352

    PubMed  Google Scholar 

  • Walter GH (1991) What is resource partitioning? J Theoretical Biology 150(2):137–143

  • West SA, Cunningham JP (2002) A general model for host plant selection in phytophagous insects. J Theor Biol 214(3):499–513. https://doi.org/10.1006/jtbi.2001.2475

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods applications 18(1):315–322

    Google Scholar 

  • Witzgall P et al (2012) "This is not an apple”-yeast mutualism in codling moth. J Chem Ecol 38(8):949–957. https://doi.org/10.1007/s10886-012-0158-y

Download references

Acknowledgements

We thank Mofakhar Hossain, Daniel Lai, and Tomas Linder. The scholarship was provided by QUT, and supported by Hort Innovation project AL16009.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the scope and design of methods. FB conducted all experiments, performed data analysis and wrote the manuscript, under the guidance of JPC, KF, and AMP.

Corresponding author

Correspondence to Farrukh Baig.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

All authors contributed to the scope and design of methods. FB conducted all experiments, performed data analysis and wrote the manuscript, under the guidance of JPC, KF, and AMP.

Electronic supplementary material

ESM 1

(DOCX 446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, F., Farnier, K., Piper, A.M. et al. Yeasts Influence Host Selection and Larval Fitness in Two Frugivorous Carpophilus Beetle Species. J Chem Ecol 46, 675–687 (2020). https://doi.org/10.1007/s10886-020-01167-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-020-01167-5

Keywords

Navigation