Skip to main content

Advertisement

Log in

Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote nerve repair and neurogenesis after stroke, and the repair of neurons damaged by ischemia has become a research focus. This article reviews several possible mechanisms of stroke and neurogenesis and introduces novel neurogenic agents (fibroblast growth factors, brain-derived neurotrophic factor, purine nucleosides, resveratrol, S-nitrosoglutathione, osteopontin, etc.) as well as other treatments that have shown neuroprotective or neurogenesis-promoting effects.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ApoE:

Apolipoprotein E

iNOS:

Inducible nitric oxide synthase

Ara-C:

Cytosine-b-D-arabinofuranoside

IPC:

Induction of Ischemic preconditioning

BBB:

Blood–brain barrier

Ips:

Induced pluripotent stem cell

BCCAO:

Bilateral common carotid occlusion

KA:

Kainic acid

Bcl-2:

B cell lymphoma/leukemia 2

MCAO:

Middle cerebral artery occlusion

BDNF:

Brain-derived neurotrophic factor

MRI:

Magnetic resonance imaging

BMMC:

Bone marrow mononuclear cell

NAD:

Nicotinamide adenine dinucleotide

BrdU:

5-Bromo-2′-deoxyuridine

NF:

Neurotrophic factor

CBF:

Cerebral blood flow

NICD:

Notch intracellular domains

CB-MSC:

Cord blood mesenchymal stem cells

NLI:

Bioluminescence imaging

CCI:

Controlled cortical impact

NPC:

Neural precursor cells

CGN:

Cerebellar granule neuron

NSC:

Neural stem cells

CHA:

N6-Cyclohexyladenosine

OB:

Olfactory bulb

CXCR4:

CXC chemokine receptor 4

OGD:

Oxygen and glucose deprivation

DCX:

Neuroblast-specific doublecortin

OPC:

Oligodendrocytes

DG:

Dentate gyrus

OPN:

Osteopontin

Dsh:

Dishevelled

PCR:

Polymerase chain reaction

EGCG:

(−)-Epigallocatechin-3-gallate

PDE5:

Phosphodiesterase 5

EGF:

Epidermal growth factor

PEG:

Polyethylene glycol

Enos:

Endothelial nitric oxide synthase

RMS:

Rostral migratory stream

EPO:

Erythropoietin

ROS:

Reactive oxygen species

EPSP:

Excitatory postsynaptic potential

rtPA:

Recombinant tissue-plasminogen activator

ESC:

Embryonic stem cell

SDF-1:

Stromal-derived factor-1

FAC:

Fluorescence activated cell

SDS:

Sodium Danshensu

FDA:

The Food and Drug Administration

SGZ:

Subgranular zone

FGF-2:

Fibroblast growth factor-2

SNO-Ps:

S-nitrosylated proteins

FGFs:

Fibroblast growth factors

SOD 2:

Superoxide Dismutase 2

FLX:

Fluoxetine

SVZ:

Subventricular zone

GSNO:

S-nitrosoglutathione

TBN:

Tetramethylpyrazine

HA:

Hyaluronic acid

TCF:

T-cell factor

HIF-1α:

Hypoxia-inducible factor-1α

TrkB:

Tyrosine kinases

HO1:

Heme oxygenase 1

TTC:

2,3,5-Triphenyltetrazolium chloride

HPLC:

High performance liquid chromatography

VC:

Visual cortex

HSGAG:

Heparin sulfate glycosaminoglycan

VCAM-1:

Vascular cell adhesion factor-1

HSV-1:

Herpes simplex virus type 1

VEGF:

Vascular endothelial growth factor

References

  1. Hossmann KA (2006) Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 26:1055

    Google Scholar 

  2. Heron M (2018) Deaths: leading causes for 2016. Natl Vital Stat Rep 67:1–77

    PubMed  Google Scholar 

  3. Ovbiagele B, Nguyen-Huynh MN (2011) Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics 8:319

    PubMed  PubMed Central  Google Scholar 

  4. Tsuchiya M, Sako K, Yura S, Yonemasu Y (1992) Cerebral blood flow and histopathological changes following permanent bilateral carotid artery ligation in Wistar rats. Exp Brain Res. https://doi.org/10.1007/BF00229004

    Article  PubMed  Google Scholar 

  5. Swanson RA, Farrell K, Stein BA (1997) Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia. https://doi.org/10.1002/(SICI)1098-1136(199709)21:1<142:AID-GLIA16>3.0.CO;2-S

    Article  PubMed  Google Scholar 

  6. Ying W, Han SK, Miller JW, Swanson RA (1999) Acidosis potentiates oxidative neuronal death by multiple mechanisms. J Neurochem. https://doi.org/10.1046/j.1471-4159.1999.0731549.x

    Article  PubMed  Google Scholar 

  7. Swanson RA, Farrell K, Simon RP (1995) Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J Cereb Blood Flow Metab. https://doi.org/10.1038/jcbfm.1995.52

    Article  PubMed  Google Scholar 

  8. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:319

    Google Scholar 

  9. Katsura KI, Kristian T, Siesjo BK (1994) Energy metabolism, ion homeostasis, and cell damage in the brain. Biochem Soc Trans 22:991

    CAS  PubMed  Google Scholar 

  10. Martin RL, Lloyd HGE, Cowan AI (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. https://doi.org/10.1016/0166-2236(94)90008-6

    Article  PubMed  Google Scholar 

  11. Simon RP, Griffiths T, Evans MC et al (1984) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J Cereb Blood Flow Metab. https://doi.org/10.1038/jcbfm.1984.52

    Article  PubMed  Google Scholar 

  12. LoPresti ST, Popovic B, Kulkarni M et al (2019) Free radical-decellularized tissue promotes enhanced antioxidant and anti-inflammatory macrophage response. Biomaterials. https://doi.org/10.1016/j.biomaterials.2019.119376

    Article  PubMed  Google Scholar 

  13. Cheon SY, Kim EJ, Kim JM, Koo BN (2018) Cell type-specific mechanisms in the pathogenesis of ischemic stroke: the role of apoptosis signal-regulating kinase 1. Oxid Med Cell Longev. https://doi.org/10.1155/2018/2596043

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ünal-Çevik I, Kilinç M, Can A et al (2004) Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke. https://doi.org/10.1161/01.STR.0000136149.81831.c5

    Article  PubMed  Google Scholar 

  15. Wei L, Ying DJ, Cui L et al (2004) Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res. https://doi.org/10.1016/j.brainres.2004.06.080

    Article  PubMed  Google Scholar 

  16. Mellough CB, Cho S, Wood A, Przyborski S (2011) Neurite formation by neurons derived from adult rat hippocampal progenitor cells is susceptible to myelin inhibition. Neurochem Int. https://doi.org/10.1016/j.neuint.2011.01.015

    Article  PubMed  Google Scholar 

  17. Gu H, Yu SP, Gutekunst CA et al (2013) Inhibition of the Rho signaling pathway improves neurite outgrowth and neuronal differentiation of mouse neural stem cells. Int J Physiol Pathophysiol Pharmacol 5:11

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenberg GA, Navratil M, Barone F, Feuerstein G (1996) Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab. https://doi.org/10.1097/00004647-199605000-00002

    Article  PubMed  Google Scholar 

  19. Asahi M, Wang X, Mori T et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. https://doi.org/10.1523/JNEUROSCI.21-19-07724.2001

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. https://doi.org/10.1161/01.STR.29.10.2189

    Article  PubMed  Google Scholar 

  21. Gidday JM, Gasche YG, Copin JC et al (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol. https://doi.org/10.1152/ajpheart.01275.2004

    Article  Google Scholar 

  22. Khoshnam SE, Winlow W, Farzaneh M et al (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38:1167

    PubMed  Google Scholar 

  23. Mirzadeh Z, Merkle FT, Soriano-Navarro M et al (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. https://doi.org/10.1016/j.stem.2008.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sun GJ, Zhou Y, Stadel RP et al (2015) Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1508545112

    Article  PubMed  Google Scholar 

  25. Jacobs WB, Fehlings MG, Grossman RG et al (2003) The molecular basis of neural regeneration. Neurosurgery 53:943

    PubMed  Google Scholar 

  26. Rink A, Fung KM, Trojanowski JQ et al (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 147:1575

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Crowe MJ, Bresnahan JC, Shuman SL et al (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. https://doi.org/10.1038/nm0197-73

    Article  PubMed  Google Scholar 

  28. Caroni P, Schwab ME (1988) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol. https://doi.org/10.1083/jcb.106.4.1281

    Article  PubMed  Google Scholar 

  29. Davies SJA, Fitch MT, Memberg SP et al (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature. https://doi.org/10.1038/37776

    Article  PubMed  Google Scholar 

  30. Raposo C, Schwartz M (2014) Glial scar and immune cell involvement in tissue remodeling and repair following acute CNS injuries. Glia 62:1895

    PubMed  Google Scholar 

  31. Gervois P, Wolfs E, Ratajczak J et al (2016) Stem cell-based therapies for ischemic stroke: preclinical results and the potential of imaging-assisted evaluation of donor cell fate and mechanisms of brain regeneration. Med Res Rev 35:1080

    Google Scholar 

  32. Chang HK, Veeravagu A, Wang MY (2016) Neuroregeneration: North America’s first human stem cell trial for stroke. Neurosurgery 79:N21

    PubMed  Google Scholar 

  33. Stroemer P, Patel S, Hope A et al (2009) The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair. https://doi.org/10.1177/1545968309335978

    Article  PubMed  Google Scholar 

  34. Carballo-Molina OA, Velasco I (2015) Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00013

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu H, Cao B, Feng M et al (2010) Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats. Anat Rec. https://doi.org/10.1002/ar.20941

    Article  Google Scholar 

  36. Tao J, Xue XH, Chen LD et al (2010) Electroacupuncture improves neurological deficits and enhances proliferation and differentiation of endogenous nerve stem cells in rats with focal cerebral ischemia. Neurol Res. https://doi.org/10.1179/174313209X414506

    Article  PubMed  Google Scholar 

  37. Kim YR, Kim HN, Ahn SM et al (2014) Electroacupuncture promotes post-stroke functional recovery via enhancing endogenous neurogenesis in mouse focal cerebral ischemia. PLoS ONE. https://doi.org/10.1371/journal.pone.0090000

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ahn SM, Kim YR, Kim HN et al (2016) Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion. Sci Rep. https://doi.org/10.1038/srep28646

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yagita Y, Kitagawa K, Ohtsuki T et al (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke. https://doi.org/10.1161/01.STR.32.8.1890

    Article  PubMed  Google Scholar 

  40. Mathews KJ, Allen KM, Boerrigter D et al (2017) Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell. https://doi.org/10.1111/acel.12641

    Article  PubMed  PubMed Central  Google Scholar 

  41. Takasawa KI, Kitagawa K, Yagita Y et al (2002) Increased proliferation of neural progenitor cells but reduced survival of newborn cells in the contralateral hippocampus after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. https://doi.org/10.1097/00004647-200203000-00007

    Article  PubMed  Google Scholar 

  42. Nakatomi H, Kuriu T, Okabe S et al (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. https://doi.org/10.1016/S0092-8674(02)00862-0

    Article  PubMed  Google Scholar 

  43. Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9:261

    PubMed  Google Scholar 

  44. Parent JM, Vexler ZS, Gong C et al (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. https://doi.org/10.1002/ana.10393

    Article  PubMed  Google Scholar 

  45. Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. https://doi.org/10.1038/nm747

    Article  PubMed  Google Scholar 

  46. Toresson H, Parmar M, Campbell K (2000) Expression of Meis and Pbx genes and their protein products in the developing telencephalon: implications for regional differentiation. Mech Dev. https://doi.org/10.1016/S0925-4773(00)00324-5

    Article  PubMed  Google Scholar 

  47. Palma-Tortosa S, García-Culebras A, Moraga A et al (2017) Specific features of SVZ Neurogenesis after cortical ischemia: a longitudinal study. Sci Rep. https://doi.org/10.1038/s41598-017-16109-7

    Article  PubMed  PubMed Central  Google Scholar 

  48. Palma-Tortosa S, Hurtado O, Pradillo JM et al (2019) Toll-like receptor 4 regulates subventricular zone proliferation and neuroblast migration after experimental stroke. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2019.05.002

    Article  PubMed  Google Scholar 

  49. MacDonald BT, Semenov MV, He X (2007) Snapshot: Wnt/β-catenin signaling. Cell 131:1204.e1–1204.e2. https://doi.org/10.1016/j.cell.2007.11.036

    Article  CAS  Google Scholar 

  50. Wang J, Chen T, Shan G (2017) MiR-148b regulates proliferation and differentiation of neural stem cells via Wnt/β-Catenin signaling in rat ischemic stroke model. Front Cell Neurosci. https://doi.org/10.3389/fncel.2017.00329

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lei ZN, Zhang LM, Sun FY (2008) β-Catenin siRNA inhibits ischemia-induced striatal neurogenesis in adult rat brain following a transient middle cerebral artery occlusion. Neurosci Lett. https://doi.org/10.1016/j.neulet.2008.02.031

    Article  PubMed  Google Scholar 

  52. Lugert S, Basak O, Knuckles P et al (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell. https://doi.org/10.1016/j.stem.2010.03.017

    Article  PubMed  Google Scholar 

  53. Imayoshi I, Sakamoto M, Yamaguchi M et al (2010) Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4987-09.2010

    Article  PubMed  PubMed Central  Google Scholar 

  54. Benner EJ, Luciano D, Jo R et al (2013) Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature. https://doi.org/10.1038/nature12069

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pan W, Jin Y, Chen J et al (2013) Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci. https://doi.org/10.1523/JNEUROSCI.3150-12.2013

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tozaki-Saitoh H, Tsuda M, Inoue K (2011) Role of purinergic receptors in CNS function and neuroprotection. Adv Pharmacol 61:495

    CAS  PubMed  Google Scholar 

  57. Codeluppi S, Svensson CI, Hefferan MP et al (2009) The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4103-08.2009

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen CH, Sung CS, Huang SY et al (2016) The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Exp Neurol. https://doi.org/10.1016/j.expneurol.2016.01.023

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yamashita K, Kotani Y, Nakajima Y et al (2007) Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res. https://doi.org/10.1016/j.brainres.2007.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nan L, Yang L, Zheng Y et al (2017) Effects of gualou guizhi decoction aqueous extract on axonal regeneration in organotypic cortical slice culture after oxygen-glucose deprivation. Evid-Based Complement Altern Med. https://doi.org/10.1155/2017/5170538

    Article  Google Scholar 

  61. Yang G, Qian C, Wang N et al (2017) Tetramethylpyrazine protects against oxygen-glucose deprivation-induced brain microvascular endothelial cells injury via Rho/Rho-kinase signaling pathway. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-016-0398-4

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gwak YS, Unabia GC, Hulsebosch CE (2009) Activation of p-38α MAPK contributes to neuronal hyperexcitability in caudal regions remote from spinal cord injury. Exp Neurol. https://doi.org/10.1016/j.expneurol.2009.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rosas OR, Figueroa JD, Torrado AI et al (2011) Expression and activation of ephexin is altered after spinal cord injury. Dev Neurobiol. https://doi.org/10.1002/dneu.20848

    Article  PubMed  PubMed Central  Google Scholar 

  64. Beenken A, Mohammadi M (2009) The FGF family: Biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M (1999) Structural basis for FGF receptor dimerization and activation. Cell. https://doi.org/10.1016/S0092-8674(00)80051-3

    Article  PubMed  Google Scholar 

  66. Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2005.01.008

    Article  PubMed  Google Scholar 

  67. Vaccarino FM, Schwartz ML, Raballo R et al (1999) Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci. https://doi.org/10.1038/6350

    Article  PubMed  Google Scholar 

  68. Kiprianova I, Schindowski K, Halbach VBU et al (2004) Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2. Exp Neurol. https://doi.org/10.1016/j.expneurol.2004.06.004

    Article  PubMed  Google Scholar 

  69. Lenhard T, Schober A, Suter-Crazzolara C, Unsicker K (2002) Fibroblast growth factor-2 requires glial-cell-line-derived neurotrophic factor for exerting its neuroprotective actions on glutamate-lesioned hippocampal neurons. Mol Cell Neurosci. https://doi.org/10.1006/mcne.2002.1134

    Article  PubMed  Google Scholar 

  70. Ikeda N, Nonoguchi N, Ming ZZ et al (2005) Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke. https://doi.org/10.1161/01.STR.0000190006.88896.d3

    Article  PubMed  Google Scholar 

  71. Yoshimura S, Takagi Y, Harada J et al (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.101034998

    Article  PubMed  Google Scholar 

  72. Watanabe T, Okuda Y, Nonoguchi N et al (2004) Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. https://doi.org/10.1097/01.WCB.0000136525.75839.41

    Article  PubMed  Google Scholar 

  73. Dayer AG, Jenny B, Sauvain MO et al (2007) Expression of FGF-2 in neural progenitor cells enhances their potential for cellular brain repair in the rodent cortex. Brain. https://doi.org/10.1093/brain/awm200

    Article  PubMed  Google Scholar 

  74. Jenny B, Kanemitsu M, Tsupykov O et al (2009) Fibroblast growth factor-2 overexpression in transplanted neural progenitors promotes perivascular cluster formation with a neurogenic potential. Stem Cells. https://doi.org/10.1002/stem.46

    Article  PubMed  Google Scholar 

  75. Shen Q, Goderie SK, Jin L et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. https://doi.org/10.1126/science.1095505

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tao Y, Black IB, DiCicco-Bloom E (1997) In vivo neurogenesis is inhibited by neutralizing antibodies to basic fibroblast growth factor. J Neurobiol. https://doi.org/10.1002/(SICI)1097-4695(199709)33:3<289:AID-NEU7>3.0.CO;2-Y

    Article  PubMed  Google Scholar 

  77. Ye Q, Wu Y, Wu J et al (2018) Neural stem cells expressing bFGF reduce brain damage and restore sensorimotor function after neonatal hypoxia-ischemia. Cell Physiol Biochem. https://doi.org/10.1159/000486226

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cheng Y, Black IB, DiCicco-Bloom E (2002) Hippocampal granule neuron production and population size are regulated by levels of bFGF. Eur J Neurosci. https://doi.org/10.1046/j.0953-816x.2001.01832.x

    Article  PubMed  Google Scholar 

  79. Wang ZL, Cheng SM, Ma MM et al (2008) Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett. https://doi.org/10.1016/j.neulet.2008.09.030

    Article  PubMed  PubMed Central  Google Scholar 

  80. Todorov LD, Mihaylova-Todorova S, Westfall TD et al (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature. https://doi.org/10.1038/387076a0

    Article  PubMed  Google Scholar 

  81. Fredholm BB, Ijzerman AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527

    CAS  Google Scholar 

  82. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673

    CAS  PubMed  Google Scholar 

  83. Jackson EK, Kotermanski SE, Menshikova EV et al (2017) Adenosine production by brain cells. J Neurochem. https://doi.org/10.1111/jnc.14018

    Article  PubMed  PubMed Central  Google Scholar 

  84. Masino SA, Geiger JD (2008) Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci. https://doi.org/10.1016/j.tins.2008.02.009

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139:1019

    CAS  PubMed  Google Scholar 

  86. Asghari AA, Azarnia M, Mirnajafi-Zadeh J, Javan M (2013) Adenosine A1 receptor agonist, N6-cyclohexyladenosine, protects myelin and induces remyelination in an experimental model of rat optic chiasm demyelination; Electrophysiological and histopathological studies. J Neurol Sci. https://doi.org/10.1016/j.jns.2012.11.008

    Article  PubMed  Google Scholar 

  87. Coppi E, Cellai L, Maraula G et al (2013) Adenosine A2A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2013.05.035

    Article  PubMed  Google Scholar 

  88. Ribeiro FF, Neves-Tomé R, Assaife-Lopes N et al (2016) Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons. Brain Struct Funct. https://doi.org/10.1007/s00429-015-1072-1

    Article  PubMed  Google Scholar 

  89. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Beamer E, Gölöncsér F, Horváth G et al (2016) Purinergic mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology 104:94

    CAS  PubMed  Google Scholar 

  91. Rathbone M, Pilutti L, Caciagli F, Jiang S (2008) Neurotrophic effects of extracellular guanosine. Nucleosides Nucleotides Nucleic Acids 27:666

    CAS  PubMed  Google Scholar 

  92. Dal-Cim T, Martins WC, Santos ARS, Tasca CI (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca2+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience. https://doi.org/10.1016/j.neuroscience.2011.03.022

    Article  PubMed  Google Scholar 

  93. Ciccarelli R, Ballerini P, Sabatino G et al (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19:395

    CAS  PubMed  Google Scholar 

  94. Gerrikagoitia I, Martínez-Millán L (2009) Guanosine-induced synaptogenesis in the adult brain in vivo. Anat Rec 292:1968

    Google Scholar 

  95. Goritz C, Mauch DH, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2005.02.006

    Article  PubMed  Google Scholar 

  96. Ballerini P, Ciccarelli R, Di Iorio P et al (2006) Guanosine effect on cholesterol efflux and apolipoprotein E expression in astrocytes. Purinergic Signal 2:637

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rui LZ, Zhang Z, Zhang L et al (2006) Delayed treatment with sildenafil enhances neurogenesis and improves functional recovery in aged rats after focal cerebral ischemia. J Neurosci Res. https://doi.org/10.1002/jnr.20813

    Article  Google Scholar 

  98. Wietzikoski EGG, Foiatto JC, Czeczko NG et al (2017) Tadalafil protector effect during ischemia-reperfusion in rats. Acta Circ Bras. https://doi.org/10.1590/s0102-865020170110000009

    Article  Google Scholar 

  99. Jeandet P, Douillet-Breuil AC, Bessis R et al (2002) Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agric Food Chem 50:2731

    CAS  PubMed  Google Scholar 

  100. Huang SS, Tsai MC, Chih CL et al (2001) Resveratrol reduction of infarct size in long-evans rats subjected to focal cerebral ischemia. Life Sci. https://doi.org/10.1016/S0024-3205(01)01195-X

    Article  PubMed  Google Scholar 

  101. Karalis F, Soubasi V, Georgiou T et al (2011) Resveratrol ameliorates hypoxia/ischemia-induced behavioral deficits and brain injury in the neonatal rat brain. Brain Res. https://doi.org/10.1016/j.brainres.2011.09.044

    Article  PubMed  Google Scholar 

  102. Girbovan C, Morin L, Plamondon H (2012) Repeated resveratrol administration confers lasting protection against neuronal damage but induces dose-related alterations of behavioral impairments after global ischemia. Behav Pharmacol. https://doi.org/10.1097/FBP.0b013e32834eafa3

    Article  PubMed  Google Scholar 

  103. Raval AP, Dave KR, Pérez-Pinzón MA (2006) Resveratrol mimics ischemic preconditioning in the brain. J Cereb Blood Flow Metab. https://doi.org/10.1038/sj.jcbfm.9600262

    Article  PubMed  Google Scholar 

  104. Koronowski KB, Dave KR, Saul I et al (2015) Resveratrol preconditioning induces a novel extended window of ischemic tolerance in the mouse brain. Stroke. https://doi.org/10.1161/STROKEAHA.115.009876

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tang F, Guo S, Liao H et al (2017) Resveratrol enhances neurite outgrowth and synaptogenesis via sonic hedgehog signaling following oxygen-glucose deprivation/reoxygenation injury. Cell Physiol Biochem 43:852–869. https://doi.org/10.1159/000481611

    Article  CAS  PubMed  Google Scholar 

  106. Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0610068104

    Article  PubMed  Google Scholar 

  107. Li C, Yan Z, Yang J et al (2010) Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats. Neurochem Int. https://doi.org/10.1016/j.neuint.2009.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  108. Simão F, Matté A, Matté C et al (2011) Resveratrol prevents oxidative stress and inhibition of Na +K +-ATPase activity induced by transient global cerebral ischemia in rats. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2010.07.013

    Article  PubMed  Google Scholar 

  109. Kizmazoglu C, Aydin HE, Sevin IE et al (2015) Neuroprotective effect of resveratrol on acute brain ischemia reperfusion injury by measuring annexin v, p53, bcl-2 levels in rats. J Korean Neurosurg Soc. https://doi.org/10.3340/jkns.2015.58.6.508

    Article  PubMed  PubMed Central  Google Scholar 

  110. He Q, Li Z, Wang Y et al (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2017.06.029

    Article  PubMed  Google Scholar 

  111. West T, Atzeva M, Holtzman DM (2007) Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev Neurosci 29:263

    Google Scholar 

  112. Sakata Y, Zhuang H, Kwansa H et al (2010) Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp Neurol. https://doi.org/10.1016/j.expneurol.2010.03.032

    Article  PubMed  PubMed Central  Google Scholar 

  113. Della-Morte D, Dave KR, DeFazio RA et al (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience. https://doi.org/10.1016/j.neuroscience.2009.01.017

    Article  PubMed  PubMed Central  Google Scholar 

  114. Virgili M, Contestabile A (2000) Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett. https://doi.org/10.1016/S0304-3940(00)00820-X

    Article  PubMed  Google Scholar 

  115. Fukui M, Choi HJ, Zhu Bao Ting BT (2010) Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2010.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wang Q, Yu S, Simonyi A et al (2004) Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem Res. https://doi.org/10.1007/s11064-004-6883-z

    Article  PubMed  Google Scholar 

  117. Landucci E, Llorente IL, Anuncibay-Soto B et al (2018) Bicuculline reverts the neuroprotective effects of meloxicam in an oxygen and glucose deprivation (OGD) model of organotypic hippocampal slice cultures. Neuroscience. https://doi.org/10.1016/j.neuroscience.2018.06.024

    Article  PubMed  Google Scholar 

  118. Zamin LL, Dillenburg-Pilla P, Argenta-Comiran R et al (2006) Protective effect of resveratrol against oxygen-glucose deprivation in organotypic hippocampal slice cultures: involvement of PI3-K pathway. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2006.06.002

    Article  PubMed  Google Scholar 

  119. Agrawal M, Kumar V, Singh AK et al (2013) Trans-resveratrol protects ischemic PC12 cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes. ACS Chem Neurosci. https://doi.org/10.1021/cn300143m

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gong QH, Wang Q, Shi JS et al (2007) Inhibition of caspases and intracellular free Ca2+ concentrations are involved in resveratrol protection against apoptosis in rat primary neuron cultures. Acta Pharmacol Sin. https://doi.org/10.1111/j.1745-7254.2007.00666.x

    Article  PubMed  Google Scholar 

  121. Wang MJ, Huang HM, Hsieh SJ et al (2001) Resveratrol inhibits interleukin-6 production in cortical mixed glial cells under hypoxia/hypoglycemia followed by reoxygenation. J Neuroimmunol. https://doi.org/10.1016/S0165-5728(00)00374-X

    Article  PubMed  PubMed Central  Google Scholar 

  122. Okawara M, Katsuki H, Kurimoto E et al (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2006.11.003

    Article  PubMed  Google Scholar 

  123. Bournival J, Quessy P, Martinoli MG (2009) Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-009-9411-5

    Article  PubMed  Google Scholar 

  124. Utreras E, Terse A, Keller J et al (2011) Resveratrol inhibits Cdk5 activity through regulation of p35 expression. Mol Pain. https://doi.org/10.1186/1744-8069-7-49

    Article  PubMed  PubMed Central  Google Scholar 

  125. Singh SP, Wishnok JS, Keshive M et al (1996) The chemistry of the S-nitrosoglutathione/glutathione system. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.93.25.14428

    Article  PubMed  Google Scholar 

  126. Kluge I, Gutteck-Amsler U, Zollinger M, Do KQ (2002) S-nitrosoglutathione in rat cerebellum: identification and quantification by liquid chromatography-mass spectrometry. J Neurochem. https://doi.org/10.1046/j.1471-4159.1997.69062599.x

    Article  Google Scholar 

  127. Khan M, Sekhon B, Giri S et al (2005) S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab. https://doi.org/10.1038/sj.jcbfm.9600012

    Article  PubMed  Google Scholar 

  128. Khan M, Dhammu TS, Sakakima H et al (2012) The inhibitory effect of S-nitrosoglutathione on blood-brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 123:86

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim J, Won JS, Singh AK et al (2014) STAT3 regulation by S-nitrosylation: implication for inflammatory disease. Antioxidants Redox Signal. https://doi.org/10.1089/ars.2013.5223

    Article  Google Scholar 

  130. Radomski MW, Rees DD, Dutra A, Moncada S (1992) S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol. https://doi.org/10.1111/j.1476-5381.1992.tb14517.x

    Article  PubMed  PubMed Central  Google Scholar 

  131. Savidge TC, Newman P, Pothoulakis C et al (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. https://doi.org/10.1053/j.gastro.2007.01.051

    Article  PubMed  Google Scholar 

  132. Numajiri N, Takasawa K, Nishiya T et al (2011) On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1103503108

    Article  PubMed  Google Scholar 

  133. Cheng XW, Kuzuya M, Kim W et al (2010) Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/akt-dependent hypoxia-induced factor-1α reactivation in mice of advanced age. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.109.909218

    Article  PubMed  PubMed Central  Google Scholar 

  134. Teng H, Zhang ZG, Wang L et al (2008) Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. https://doi.org/10.1038/sj.jcbfm.9600573

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yin XH, Yan JZ, Hou XY et al (2013) Neuroprotection of S-nitrosoglutathione against ischemic injury by down-regulating Fas S-nitrosylation and downstream signaling. Neuroscience. https://doi.org/10.1016/j.neuroscience.2013.06.012

    Article  PubMed  Google Scholar 

  136. Belder AJD, Macallister R, Radomski MW et al (1994) Effects of S-nitroso-glutathione in the human forearm circulation: evidence for selective inhibition of platelet activation. Cardiovasc Res. https://doi.org/10.1093/cvr/28.5.691

    Article  PubMed  Google Scholar 

  137. Hornyak I, Pankotai E, Kiss L, Lacza Z (2011) Current developments in the therapeutic potential of S-nitrosoglutathione, an endogenous NO-donor molecule. Curr Pharm Biotechnol. https://doi.org/10.2174/138920111798280983

    Article  PubMed  Google Scholar 

  138. Colagiovanni DB, Borkhataria D, Looker D et al (2011) Preclinical 28-day inhalation toxicity assessment of S-nitrosoglutathione in beagle dogs and wistar rats. Int J Toxicol 30:466

    CAS  PubMed  Google Scholar 

  139. Butler WT (1989) The nature and significance of osteopontin. Connect Tissue Res. https://doi.org/10.3109/03008208909002412

    Article  PubMed  Google Scholar 

  140. Butler WT (1995) Structural and functional domains of osteopontin. Ann N Y Acad Sci. https://doi.org/10.1111/j.1749-6632.1995.tb44615.x

    Article  PubMed  Google Scholar 

  141. Albertsson AM, Zhang X, Leavenworth J et al (2014) The effect of osteopontin and osteopontin-derived peptides on preterm brain injury. J Neuroinflamm. https://doi.org/10.1186/s12974-014-0197-0

    Article  Google Scholar 

  142. Shevde LA, Samant RS (2014) Role of osteopontin in the pathophysiology of cancer. Matrix Biol 37:131

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Morales-Ibanez O, Domínguez M, Ki SH et al (2013) Human and experimental evidence supporting a role for osteopontin in alcoholic hepatitis. Hepatology. https://doi.org/10.1002/hep.26521

    Article  PubMed  PubMed Central  Google Scholar 

  144. Boche D, Perry VH, Nicoll JAR (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    CAS  PubMed  Google Scholar 

  145. Kato A, Okura T, Hamada C et al (2014) Cell stress induces upregulation of osteopontin via the ERK pathway in type II alveolar epithelial cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0100106

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hur EM, Youssef S, Haws ME et al (2007) Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat Immunol. https://doi.org/10.1038/ni1415

    Article  PubMed  Google Scholar 

  147. Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19:333

    CAS  PubMed  Google Scholar 

  148. Meller R, Stevens SL, Minami M et al (2005) Neuroprotection by osteopontin in stroke. J Cereb Blood Flow Metab. https://doi.org/10.1038/sj.jcbfm.9600022

    Article  PubMed  Google Scholar 

  149. Doyle KP, Yang T, Lessov NS et al (2008) Nasal administration of osteopontin peptide mimetics confers neuroprotection in stroke. J Cereb Blood Flow Metab. https://doi.org/10.1038/jcbfm.2008.17

    Article  PubMed  PubMed Central  Google Scholar 

  150. Yan YP, Lang BT, Vemuganti R, Dempsey RJ (2009) Osteopontin is a mediator of the lateral migration of neuroblasts from the subventricular zone after focal cerebral ischemia. Neurochem Int. https://doi.org/10.1016/j.neuint.2009.08.007

    Article  PubMed  Google Scholar 

  151. Yan YP, Lang BT, Vemuganti R, Dempsey RJ (2009) Persistent migration of neuroblasts from the subventricular zone to the injured striatum mediated by osteopontin following intracerebral hemorrhage. J Neurochem. https://doi.org/10.1111/j.1471-4159.2009.06059.x

    Article  PubMed  Google Scholar 

  152. Rabenstein M, Hucklenbroich J, Willuweit A et al (2015) Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem Cell Res Ther. https://doi.org/10.1186/s13287-015-0098-x

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kalluri HSG, Dempsey RJ (2012) Osteopontin increases the proliferation of neural progenitor cells. Int J Dev Neurosci. https://doi.org/10.1016/j.ijdevneu.2012.04.003

    Article  PubMed  Google Scholar 

  154. Maetzler W, Berg D, Schalamberidze N et al (2007) Osteopontin is elevated in Parkinson’s disease and its absence leads to reduced neurodegeneration in the MPTP model. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2006.10.020

    Article  PubMed  Google Scholar 

  155. Merali Z, Leung J, Mikulis D et al (2014) Longitudinal assessment of imatinib’s effect on the blood–brain barrier after ischemia/reperfusion injury with permeability MRI. Transl Stroke Res. https://doi.org/10.1007/s12975-014-0358-6

    Article  PubMed  Google Scholar 

  156. Park JM, Shin YJ, Kim HL et al (2012) Sustained expression of osteopontin is closely associated with calcium deposits in the rat hippocampus after transient forebrain ischemia. J Histochem Cytochem. https://doi.org/10.1369/0022155412441707

    Article  PubMed  PubMed Central  Google Scholar 

  157. Suzuki H, Ayer R, Sugawara T et al (2010) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. https://doi.org/10.1097/CCM.0b013e3181c027ae

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gary DS, Mattson MP (2001) Integrin signaling via the PI3-kinase-Akt pathway increases neuronal resistance to glutamate-induced apoptosis. J Neurochem. https://doi.org/10.1046/j.1471-4159.2001.00173.x

    Article  PubMed  Google Scholar 

  159. Hohn A, Leibrock J, Bailey K, Barde YA (1990) Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. https://doi.org/10.1038/344339a0

    Article  PubMed  Google Scholar 

  160. Leibrock J, Lottspeich F, Hohn A et al (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature. https://doi.org/10.1038/341149a0

    Article  PubMed  Google Scholar 

  161. Henderson CE, Phillips HS, Pollock RA et al (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. https://doi.org/10.1126/science.7973664

    Article  PubMed  Google Scholar 

  162. Barde YA (1994) Neurotrophins: a family of proteins supporting the survival of neurons. Prog Clin Biol Res 390:45

    CAS  PubMed  Google Scholar 

  163. Lamballe F, Klein R, Barbacid M (1991) trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. https://doi.org/10.1016/0092-8674(91)90442-2

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kokaia Z, Zhao Q, Kokaia M et al (1995) Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol. https://doi.org/10.1006/exnr.1995.1085

    Article  PubMed  Google Scholar 

  165. Schäbitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. https://doi.org/10.1097/00004647-199705000-00003

    Article  PubMed  Google Scholar 

  166. Scharfman H, Goodman J, Macleod A et al (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. https://doi.org/10.1016/j.expneurol.2004.11.016

    Article  PubMed  PubMed Central  Google Scholar 

  167. Chou PC, Tsai YC, Chen SJ et al (2019) Intracerebral transplantation of erythropoietin-producing fibroblasts facilitates neurogenesis and functional recovery in an ischemic stroke model. Brain Behav. https://doi.org/10.1002/brb3.1274

    Article  PubMed  PubMed Central  Google Scholar 

  168. Li N, Song X, Wu L et al (2018) Miconazole stimulates post-ischemic neurogenesis and promotes functional restoration in rats. Neurosci Lett. https://doi.org/10.1016/j.neulet.2018.09.035

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sun X, Zhou Z, Liu T et al (2016) Fluoxetine enhances neurogenesis in aged rats with cortical infarcts, but this is not reflected in a behavioral recovery. J Mol Neurosci. https://doi.org/10.1007/s12031-015-0662-y

    Article  PubMed  Google Scholar 

  170. Popova D, Castrén E, Taira T (2017) Chronic fluoxetine administration enhances synaptic plasticity and increases functional dynamics in hippocampal CA3-CA1 synapses. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2017.09.003

    Article  PubMed  Google Scholar 

  171. Wei ZZ, Chen D, Liu LP et al (2018) Enhanced neurogenesis and collaterogenesis by sodium Danshensu treatment after focal cerebral ischemia in mice. Cell Transplant. https://doi.org/10.1177/0963689718771889

    Article  PubMed  PubMed Central  Google Scholar 

  172. Seetapun S, Yaoling J, Wang Y, Zhu YZ (2013) Neuroprotective effect of Danshensu derivatives as anti-ischaemia agents on SH-SY5Y cells and rat brain. Biosci Rep. https://doi.org/10.1042/BSR20130032

    Article  PubMed  PubMed Central  Google Scholar 

  173. Guo C, Yin Y, Duan J et al (2015) Neuroprotective effect and underlying mechanism of sodium danshensu [3-(3,4-dihydroxyphenyl) lactic acid from Radix and Rhizoma Salviae miltiorrhizae = Danshen] against cerebral ischemia and reperfusion injury in rats. Phytomedicine. https://doi.org/10.1016/j.phymed.2014.12.001

    Article  PubMed  Google Scholar 

  174. Zhang T, Gu J, Wu L et al (2017) Neuroprotective and axonal outgrowth-promoting effects of tetramethylpyrazine nitrone in chronic cerebral hypoperfusion rats and primary hippocampal neurons exposed to hypoxia. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2017.03.022

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhang G, Zhang T, Li N et al (2018) Tetramethylpyrazine nitrone activates the BDNF/Akt/CREB pathway to promote post-ischaemic neuroregeneration and recovery of neurological functions in rats. Br J Pharmacol. https://doi.org/10.1111/bph.14102

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zhang Z, Zhang G, Sun Y et al (2016) Tetramethylpyrazine nitrone, a multifunctional neuroprotective agent for ischemic stroke therapy. Sci Rep. https://doi.org/10.1038/srep37148

    Article  PubMed  PubMed Central  Google Scholar 

  177. Xue R, Wu G, Wei X et al (2016) Tea polyphenols may attenuate the neurocognitive impairment caused by global cerebral ischemia/reperfusion injury via anti-apoptosis. Nutr Neurosci. https://doi.org/10.1179/1476830514Y.0000000160

    Article  PubMed  Google Scholar 

  178. Zhang JC, Xu H, Yuan Y et al (2017) Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Mol Neurobiol. https://doi.org/10.1007/s12035-016-9924-0

    Article  PubMed  PubMed Central  Google Scholar 

  179. Park JW, Hong JS, Lee KS et al (2010) Green tea polyphenol (-)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2009.08.009

    Article  PubMed  Google Scholar 

  180. Zhang J-J, Zhu J-J, Hu Y-B et al (2017) Transplantation of bFGF-expressing neural stem cells promotes cell migration and functional recovery in rat brain after transient ischemic stroke. Oncotarget 8:102067–102077. https://doi.org/10.18632/oncotarget.22155

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hansel G, Ramos DB, Delgado CA et al (2014) The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS ONE. https://doi.org/10.1371/journal.pone.0090693

    Article  PubMed  PubMed Central  Google Scholar 

  182. Moretti R, Leger PL, Besson VC et al (2016) Sildenafil, a cyclic GMP phosphodiesterase inhibitor, induces microglial modulation after focal ischemia in the neonatal mouse brain. J Neuroinflamm. https://doi.org/10.1186/s12974-016-0560-4

    Article  Google Scholar 

  183. Engels J, Elting N, Braun L et al (2017) Sildenafil enhances quantity of immature neurons and promotes functional recovery in the developing ischemic mouse brain. Dev Neurosci 39:287

    CAS  PubMed  Google Scholar 

  184. Venkat P, Chopp M, Zacharek A et al (2019) Sildenafil treatment of vascular dementia in aged rats. Neurochem Int. https://doi.org/10.1016/j.neuint.2018.12.015

    Article  PubMed  Google Scholar 

  185. Ribeiro FF, Xapelli S, Miranda-Lourenço C et al (2016) Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 104:226

    CAS  PubMed  Google Scholar 

  186. Ciccarelli R, Di Iorio P, D’Alimonte I et al (2000) Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by the Co-presence of microglia. Glia. https://doi.org/10.1002/(SICI)1098-1136(20000201)29:3<202:AID-GLIA2>3.0.CO;2-C

    Article  PubMed  Google Scholar 

  187. Zuccarini M, Giuliani P, Frinchi M et al (2018) Uncovering the signaling pathway behind extracellular guanine-induced activation of NO System: new perspectives in memory-related disorders. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00110

    Article  PubMed  PubMed Central  Google Scholar 

  188. Simão F, Matté A, Pagnussat AS et al (2012) Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways. Eur J Neurosci. https://doi.org/10.1111/j.1460-9568.2012.08229.x

    Article  PubMed  Google Scholar 

  189. Lee EO, Park HJ, Kang JL et al (2010) Resveratrol reduces glutamate-mediated monocyte chemotactic protein-1 expression via inhibition of extracellular signal-regulated kinase 1/2 pathway in rat hippocampal slice cultures. J Neurochem. https://doi.org/10.1111/j.1471-4159.2009.06564.x

    Article  PubMed  PubMed Central  Google Scholar 

  190. Pan Y, Zhang H, Zheng Y et al (2017) Resveratrol exerts antioxidant effects by activating SIRT2 to deacetylate Prx1. Biochemistry. https://doi.org/10.1021/acs.biochem.7b00859

    Article  PubMed  PubMed Central  Google Scholar 

  191. Khan M, Dhammu TS, Matsuda F et al (2015) Promoting endothelial function by S-nitrosoglutathione through the HIF-1α/VEGF pathway stimulates neurorepair and functional recovery following experimental stroke in rats. Drug Des Devel Ther. https://doi.org/10.2147/DDDT.S77115

    Article  PubMed  PubMed Central  Google Scholar 

  192. Khan M, Dhammu TS, Baarine M et al (2018) GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1α. Behav Brain Res. https://doi.org/10.1016/j.bbr.2016.10.037

    Article  PubMed  Google Scholar 

  193. Chen Y-J, Liu Y-C, Liu Y-W et al (2019) Nitrite protects neurons against hypoxic damage through S -nitrosylation of caspase-6. Antioxid Redox Signal 31:109–126. https://doi.org/10.1089/ars.2018.7522

    Article  CAS  PubMed  Google Scholar 

  194. Rogall R, Rabenstein M, Vay S et al (2018) Bioluminescence imaging visualizes osteopontin-induced neurogenesis and neuroblast migration in the mouse brain after stroke. Stem Cell Res Ther. https://doi.org/10.1186/s13287-018-0927-9

    Article  PubMed  PubMed Central  Google Scholar 

  195. Yamamiya M, Tanabe S, Muramatsu R (2019) Microglia promote the proliferation of neural precursor cells by secreting osteopontin. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2019.04.076

    Article  PubMed  Google Scholar 

  196. Selvaraju R, Bernasconi L, Losberger C et al (2004) Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2003.12.014

    Article  PubMed  Google Scholar 

  197. Sun Y, Yu P, Zhang G et al (2012) Therapeutic effects of tetramethylpyrazine nitrone in rat ischemic stroke models. J Neurosci Res. https://doi.org/10.1002/jnr.23034

    Article  PubMed  PubMed Central  Google Scholar 

  198. Zhang G, Zhang T, Wu L et al (2018) Neuroprotective effect and mechanism of action of tetramethylpyrazine nitrone for ischemic stroke therapy. NeuroMol Med. https://doi.org/10.1007/s12017-018-8478-x

    Article  Google Scholar 

  199. Zhuang P, Sun AX, An J et al (2018) 3D neural tissue models: from spheroids to bioprinting. Biomaterials 154:113

    CAS  PubMed  Google Scholar 

  200. Moshayedi P, Nih LR, Llorente IL et al (2016) Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials. https://doi.org/10.1016/j.biomaterials.2016.07.028

    Article  PubMed  PubMed Central  Google Scholar 

  201. Costa C, Tortosa R, Domènech A et al (2007) Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse. J Chem Neuroanat. https://doi.org/10.1016/j.jchemneu.2007.01.006

    Article  PubMed  Google Scholar 

  202. Pan L, Ren Y, Cui F, Xu Q (2009) Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J Neurosci Res. https://doi.org/10.1002/jnr.22142

    Article  PubMed  Google Scholar 

  203. Seidlits SK, Khaing ZZ, Petersen RR et al (2010) The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials. https://doi.org/10.1016/j.biomaterials.2010.01.125

    Article  PubMed  Google Scholar 

  204. Zhang ZN, Freitas BC, Qian H et al (2016) Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1521255113

    Article  PubMed  Google Scholar 

  205. Wu S, Xu R, Duan B, Jiang P (2017) Three-dimensional hyaluronic acid hydrogel-based models for in vitro human iPSC-derived NPC culture and differentiation. J Mater Chem B. https://doi.org/10.1039/c7tb00721c

    Article  PubMed  PubMed Central  Google Scholar 

  206. Ma J, Tian WM, Hou SP et al (2007) An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomed Mater. https://doi.org/10.1088/1748-6041/2/4/005

    Article  PubMed  Google Scholar 

  207. Lin CM, Lin JW, Chen YC et al (2009) Hyaluronic acid inhibits the glial scar formation after brain damage with tissue loss in rats. Surg Neurol. https://doi.org/10.1016/j.wneu.2009.09.004

    Article  PubMed  Google Scholar 

  208. Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356:eaaf3627

    PubMed  PubMed Central  Google Scholar 

  209. Brännvall K, Bergman K, Wallenquist U et al (2007) Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J Neurosci Res. https://doi.org/10.1002/jnr.21358

    Article  PubMed  Google Scholar 

  210. Yao L, Damodaran G, Nikolskaya N et al (2010) The effect of laminin peptide gradient in enzymatically cross-linked collagen scaffolds on neurite growth. J Biomed Mater Res. https://doi.org/10.1002/jbm.a.32359

    Article  Google Scholar 

  211. Lee JH, Yu HS, Lee GS et al (2011) Collagen gel three-dimensional matrices combined with adhesive proteins stimulate neuronal differentiation of mesenchymal stem cells. J R Soc Interface. https://doi.org/10.1098/rsif.2010.0613

    Article  PubMed  PubMed Central  Google Scholar 

  212. Hoban DB, Newland B, Moloney TC et al (2013) The reduction in immunogenicity of neurotrophin overexpressing stem cells after intra-striatal transplantation by encapsulation inaninsitu gelling collagen hydrogel. Biomaterials. https://doi.org/10.1016/j.biomaterials.2013.08.073

    Article  PubMed  Google Scholar 

  213. Nakaji-Hirabayashi T, Kato K, Iwata H (2013) In vivo study on the survival of neural stem cells transplanted into the rat brain with a collagen hydrogel that incorporates laminin-derived polypeptides. Bioconjug Chem. https://doi.org/10.1021/bc400005m

    Article  PubMed  Google Scholar 

  214. Kornev VA, Grebenik EA, Solovieva AB et al (2018) Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: a state-of-the-art review. Comput Struct Biotechnol J 16:488

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Scott R, Marquardt L, Willits RK (2010) Characterization of poly(ethylene glycol) gels with added collagen for neural tissue engineering. J Biomed Mater Res. https://doi.org/10.1002/jbm.a.32775

    Article  Google Scholar 

  216. Lampe KJ, Mooney RG, Bjugstad KB, Mahoney MJ (2010) Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture. J Biomed Mater Res. https://doi.org/10.1002/jbm.a.32787

    Article  Google Scholar 

  217. Jain A, Kim YT, McKeon RJ, Bellamkonda RV (2006) In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials. https://doi.org/10.1016/j.biomaterials.2005.07.008

    Article  PubMed  Google Scholar 

  218. Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10:682

    CAS  PubMed  Google Scholar 

  219. Wechsler LR (2009) Stem cell therapies as an emerging paradigm in stroke (STEPS) bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke 40:510

    Google Scholar 

  220. Bliss TM, Andres RH, Steinberg GK (2010) Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 37:275

    PubMed  Google Scholar 

  221. Reimann V, Creutzig U, Kögler G (2009) Stem cells derived from cord blood in transplantation and regenerative medicine. Dtsch Aerzteblatt. https://doi.org/10.3238/arztebl.2009.0831

    Article  Google Scholar 

  222. Zanier ER, Montinaro M, Vigano M et al (2011) Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med. https://doi.org/10.1097/CCM.0b013e31822629ba

    Article  PubMed  Google Scholar 

  223. Locatelli F, Bersano A, Ballabio E et al (2009) Stem cell therapy in stroke. Cell Mol Life Sci 66:757

    CAS  PubMed  Google Scholar 

  224. Burns TC, Verfaillie CM, Low WC (2009) Stem cells for ischemic brain injury: a critical review. J Comp Neurol 515:125

    PubMed  PubMed Central  Google Scholar 

  225. Bersano A, Ballabio E, Lanfranconi S et al (2010) Clinical studies in stem cells transplantation for stroke: a review. Curr Vasc Pharmacol. https://doi.org/10.2174/157016110790226570

    Article  PubMed  Google Scholar 

  226. Kondziolka D, Steinberg GK, Cullen SB, McGrogan M (2004) Evaluation of surgical techniques for neuronal cell transplantation used in patients with stroke. Cell Transpl. https://doi.org/10.3727/000000004783983350

    Article  Google Scholar 

  227. Janowski M, Walczak P, Date I (2010) Intravenous route of cell delivery for treatment of neurological disorders: a meta-analysis of preclinical results. Stem Cells Dev. https://doi.org/10.1089/scd.2009.0271

    Article  PubMed  Google Scholar 

  228. Guzman R, De Los AA, Cheshier S et al (2008) Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke. https://doi.org/10.1161/STROKEAHA.107.500470

    Article  PubMed  Google Scholar 

  229. Monteagudo C, Hernández-Ramírez P, Álvarez-González L et al (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. https://doi.org/10.3233/RNN-2009-0483

    Article  Google Scholar 

  230. Barbosa da Fonseca LM, Gutfilen B, Rosado de Castro PH et al (2010) Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp Neurol. https://doi.org/10.1016/j.expneurol.2009.10.010

    Article  PubMed  Google Scholar 

  231. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. https://doi.org/10.1002/ana.20501

    Article  PubMed  Google Scholar 

  232. Benninger F, Beck H, Wernig M et al (2003) Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures. J Neurosci. https://doi.org/10.1523/jneurosci.23-18-07075.2003

    Article  PubMed  PubMed Central  Google Scholar 

  233. Scheffler B, Schmandt T, Schröder W et al (2003) Functional network integration of embryonic stem cell-derived astrocytes in hippocampal slice cultures. Development. https://doi.org/10.1242/dev.00714

    Article  PubMed  Google Scholar 

  234. Kondziolka D, Steinberg GK, Wechsler L et al (2005) Neurotransplantation for patients with subcortical motor stroke: a Phase 2 randomized trial. J Neurosurg. https://doi.org/10.3171/jns.2005.103.1.0038

    Article  PubMed  Google Scholar 

  235. Shu PF, Kam ST, Chan ABW et al (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res. https://doi.org/10.1002/jnr.21319

    Article  Google Scholar 

  236. Yang T, Kam ST, Wai SP, Ho KN (2009) Neurotrophism of bone marrow stromal cells to embryonic stem cells: noncontact induction and transplantation to a mouse ischemic stroke model. Cell Transplant. https://doi.org/10.3727/096368909788809767

    Article  PubMed  Google Scholar 

  237. Seminatore C, Polentes J, Ellman D et al (2010) The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke. https://doi.org/10.1161/STROKEAHA.109.563015

    Article  PubMed  Google Scholar 

  238. Sánchez-Pernaute R, Studer L, Ferrari D et al (2005) Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (Cyno-1) after transplantation. Stem Cells. https://doi.org/10.1634/stemcells.2004-0172

    Article  PubMed  PubMed Central  Google Scholar 

  239. Carson CT, Aigner S, Gage FH (2006) Stem cells: the good, bad and barely in control. Nat Med 12:1237

    CAS  PubMed  Google Scholar 

  240. Morizane A, Takahashi J, Shinoyama M et al (2006) Generation of graftable dopaminergic neuron progenitors from mouse ES cells by a combination of coculture and neurosphere methods. J Neurosci Res. https://doi.org/10.1002/jnr.20799

    Article  PubMed  Google Scholar 

  241. Hayashi J, Takagi Y, Fukuda H et al (2006) Primate embryonic stem cell-derived neuronal progenitors transplanted into ischemic brain. J Cereb Blood Flow Metab. https://doi.org/10.1038/sj.jcbfm.9600247

    Article  PubMed  Google Scholar 

  242. Bühnemann C, Scholz A, Bernreuther C et al (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain. https://doi.org/10.1093/brain/awl261

    Article  PubMed  Google Scholar 

  243. Chung S, Shin BS, Hedlund E et al (2006) Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem. https://doi.org/10.1111/j.1471-4159.2006.03841.x

    Article  PubMed  PubMed Central  Google Scholar 

  244. https://www.clinicaltrials.gov. Accessed 16 June

  245. Krause M, Phan TG, Ma H et al (2019) Cell-based therapies for stroke: are we there yet? Front Neurol 10:656

    PubMed  PubMed Central  Google Scholar 

  246. Díez-Tejedor E, Gutiérrez-Fernández M, Martínez-Sánchez P et al (2014) Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.011

    Article  PubMed  Google Scholar 

  247. Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O et al (2014) Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy. https://doi.org/10.1016/j.jcyt.2014.01.008

    Article  PubMed  Google Scholar 

  248. Banerjee S, Bentley P, Hamady M et al (2014) Intra-arterial immunoselected CD34+ stem cells for acute ischemic stroke. Stem Cells Transl Med. https://doi.org/10.5966/sctm.2013-0178

    Article  PubMed  PubMed Central  Google Scholar 

  249. Steinberg GK, Kondziolka D, Wechsler LR et al (2019) Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): a phase 1/2a study. J Neurosurg 131:1462–1472. https://doi.org/10.3171/2018.5.JNS173147

    Article  CAS  Google Scholar 

  250. Prasad K, Sharma A, Garg A et al (2014) Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. https://doi.org/10.1161/STROKEAHA.114.007028

    Article  PubMed  Google Scholar 

  251. Moniche F, Gonzalez A, Gonzalez-Marcos JR et al (2012) Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. https://doi.org/10.1161/STROKEAHA.112.659409

    Article  PubMed  Google Scholar 

  252. Hess DC, Wechsler LR, Clark WM et al (2017) Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. https://doi.org/10.1016/S1474-4422(17)30046-7

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Science and Technology Major Project of the Ministry of Science and Technology of China [No. 2016ZX09101031]; and the “Double First-Class” Construction Technology Innovation Team Project of China Pharmaceutical University [No. CPU2018GY23 and CPU2018GY24].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yahui Hu, Weirong Fang or Yunman Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ye, A., Ao, L. et al. Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia. Neurochem Res 45, 2258–2277 (2020). https://doi.org/10.1007/s11064-020-03092-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03092-1

Keywords

Navigation