Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Visible light-induced living/controlled cationic ring-opening polymerization of lactones

Abstract

Ring-opening polymerization of lactones has served as one of the most resourceful and versatile methods for the production of polyesters. However, the photocontrolled ring-opening polymerization of lactones with the advantages of being inexpensive, green, and noninvasive, is still rarely reported. In this work, we developed a series of composite photoacid generators containing a common photocatalyst and an onium salt to induce the living/controlled cationic ring-opening polymerization of lactones using benzyl alcohol or butyl alcohol as an initiator under visible light. The wavelength of the light could be easily adjustable by applying different photocatalysts. Moreover, radical species are generated concurrently during the electron transfer processes; as a result, simultaneous living/controlled cationic ring-opening polymerization of lactones and reversible addition–fragmentation chain transfer radical (RAFT) polymerization can be performed using hydroxy group capped trithiocarbonate to produce hybrid block copolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000;21:117–32.

    CAS  Google Scholar 

  2. Tang X, Chen EYX. Toward Infinitely recyclable plastics derived from renewable cyclic esters. Chem. 2019;5:284–312.

    CAS  Google Scholar 

  3. Rainbolt EA, Washington KE, Biewer MC, Stefan MC. Recent developments in micellar drug carriers featuring substituted poly(ε-caprolactone)s. Polym Chem. 2015;6:2369–81.

    CAS  Google Scholar 

  4. Odian, G. Principles of polymerization. Hoboken, New Jersey: John Wiley & Sons; 2004.

    Google Scholar 

  5. Thomas CM. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem Soc Rev. 2010;39:165–73.

    CAS  PubMed  Google Scholar 

  6. Yin Q, Yin L, Wang H, Cheng J. Synthesis and biomedical applications of functional poly (α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides. Acc Chem Res. 2015;48:1777–87.

    CAS  PubMed  Google Scholar 

  7. Bailey WJ, Gu J-M, Lin Y-N, Zheng Z-F, Zhou L-L. Ring‐opening polymerization of cyclic ketene acetals and unsaturated cyclic spiro ortho esters. Makromolekulare Chemie. Macromolecular Symposia. 1991;42–43:195–203. https://doi.org/10.1002/masy.19910420116.

    Article  Google Scholar 

  8. Longo JM, Sanford MJ, Coates GW. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure–property relationships. Chem Rev. 2016;116:15167–97.

    CAS  PubMed  Google Scholar 

  9. Hofman A, Słomkowski S, Penczek S. Structure of active centers and mechanism of the anionic polymerization of lactones. Die Makromol Chem. 1984;185:91–101.

    CAS  Google Scholar 

  10. Penczek S, Kubisa P, Matyjaszewski K. Cationic ring-opening polymerization of heterocyclic monomers. 1. Mechanisms. Advances in Polymer Science. 1980:37;1–144.

    Google Scholar 

  11. Nifant’ev I, Ivchenko P. Coordination ring-opening polymerization of cyclic esters: a critical overview of DFT modeling and visualization of the reaction mechanisms. Molecules. 2019;24:4117.

    PubMed Central  Google Scholar 

  12. Sun X, Gao JP, Wang ZY. Bicyclic guanidinium tetraphenylborate: a photobase generator and a photocatalyst for living anionic ring-opening polymerization and cross-linking of polymeric materials containing ester and hydroxy groups. J Am Chem Soc. 2008;130:8130–1.

    CAS  PubMed  Google Scholar 

  13. Coulembier O, Dove AP, Pratt RC, Sentman AC, Culkin DA, Mespouille L, et al. Latent, thermally activated organic catalysts for the on-demand living polymerization of lactide. Angew Chem Int Ed Engl. 2005;44:4964–8.

    CAS  PubMed  Google Scholar 

  14. Qi M, Dong Q, Wang D, Byers JA. Electrochemically switchable ring-opening polymerization of lactide and cyclohexene oxide. J Am Chem Soc. 2018;140:5686–90.

    CAS  PubMed  Google Scholar 

  15. Wei J, Diaconescu PL. Redox-switchable ring-opening polymerization with ferrocene derivatives. Acc Chem Res. 2019;52:415–24.

    CAS  PubMed  Google Scholar 

  16. Osaki M, Takashima Y, Yamaguchi H, Harada A. Switching of polymerization activity of cinnamoyl-α-cyclodextrin. Org Biomol Chem. 2009;7:1646–51.

    CAS  PubMed  Google Scholar 

  17. Neilson BM, Bielawski CW. Photoswitchable NHC-promoted ring-opening polymerizations. Chem Commun. 2013;49:5453–5.

    CAS  Google Scholar 

  18. Zivic N, Kuroishi PK, Dumur F, Gigmes D, Dove AP, Sardon H. Recent advances and challenges in the design of organic photoacid and photobase generators for polymerizations. Angew Chem Int Ed. 2019;58:10410–22.

    CAS  Google Scholar 

  19. Barker IA, Dove AP. Triarylsulfonium hexafluorophosphate salts as photoactivated acidic catalysts for ring-opening polymerisation. Chem Commun. 2013;49:1205–7.

    CAS  Google Scholar 

  20. Fu CK, Xu JT, Boyer C. Photoacid-mediated ring opening polymerization driven by visible light. Chem Commun. 2016;52:7126–9.

    CAS  Google Scholar 

  21. Yagci Y, Jockusch S, Turro NJ. Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules. 2010;43:6245–60.

    CAS  Google Scholar 

  22. Ciftci M, Yoshikawa Y, Yagci Y. Living cationic polymerization of vinyl ethers through a photoinduced radical oxidation/addition/deactivation sequence. Angew Chem Int Ed. 2017;56:519–23.

    CAS  Google Scholar 

  23. Dadashi-Silab S, Bildirir H, Dawson R, Thomas A, Yagci Y. Microporous thioxanthone polymers as heterogeneous photoinitiators for visible light induced free radical and cationic polymerizations. Macromolecules. 2014;47:4607–14.

    CAS  Google Scholar 

  24. Erdur S, Yilmaz G, Colak DG, Cianga I, Yagci Y. Poly(phenylenevinylene)s as sensitizers for visible light induced cationic polymerization. Macromolecules. 2014;47:7296–302.

    CAS  Google Scholar 

  25. Kahveci MU, Acik G, Yagci Y. Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light-induced free radical promoted cationic polymerization. Macromol Rapid Commun. 2012;33:309–13.

    CAS  PubMed  Google Scholar 

  26. Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. The merger of transition metal and photocatalysis. Nat Rev Chem. 2017;1:1–19.

    Google Scholar 

  27. Prier CK, Rankic DA, MacMillan DWC. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev. 2013;113:5322–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Narayanam JMR, Stephenson CRJ. Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev. 2011;40:102–13.

    CAS  PubMed  Google Scholar 

  29. Beatty JW, Stephenson CRJ. Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc Chem Res. 2015;48:1474–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Staveness D, Bosque I, Stephenson CRJ. Free radical chemistry enabled by visible light-induced electron transfer. Acc Chem Res. 2016;49:2295–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rehm D, Weller A. Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem. 1970;8:259–71.

    CAS  Google Scholar 

  32. Ramette RW, Sandell EB. Rhodamine B equilibria. J Am Chem Soc. 1956;78:4872–8.

    CAS  Google Scholar 

  33. Pohlers G, Scaiano JC. A novel photometric method for the determination of photoacid generation efficiencies using benzothiazole and xanthene dyes as acid sensors. Chem Mater. 1997;9:3222–30.

    CAS  Google Scholar 

  34. Yagci YJM. Poly(phenylenevinylene)s as sensitizers for visible light induced cationic polymerization. Macromolecules. 47, 7296–302.

  35. Okamoto Y. Cationic ring-opening polymerization of lactones in the presence of alcohol, Makromolekulare Chemie-Macromolecular Symposia. 1991:42-3;117–33.

    Google Scholar 

  36. Xu J, Shanmugam S, Duong HT, Boyer C. Organo-photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization. Polym Chem. 2015;6:5615–24.

    CAS  Google Scholar 

  37. Wu C, Chen H, Corrigan N, Jung K, Kan X, Li Z, et al. Computer-guided discovery of a pH-responsive organic photocatalyst and application for pH and light dual-gated polymerization. J Am Chem Soc. 2019;141:8207–20.

    CAS  PubMed  Google Scholar 

  38. Shanmugam S, Xu J, Boyer C. Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths. J Am Chem Soc. 2015;137:9174–85.

    CAS  PubMed  Google Scholar 

  39. Xu J, Fu C, Shanmugam S, Hawker CJ, Moad G, Boyer C. Synthesis of discrete oligomers by sequential PET-RAFT single-unit monomer insertion. Angew Chem Int Ed. 2017;56:8376–83.

    CAS  Google Scholar 

  40. Riess G. Micellization of block copolymers. Prog Polym Sci. 2003;28:1107–70.

    CAS  Google Scholar 

  41. Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118:6844–92.

    CAS  PubMed  Google Scholar 

  42. Feng HB, Lu XY, Wang WY, Kang N-G, Mays JW. Block copolymers: synthesis, self-assembly, and applications. Polymers. 2017;9:31.

    Google Scholar 

  43. Bates CM, Bates FS. 50th anniversary perspective: block polymers-pure potential. Macromolecules. 2017;50:3–22.

    CAS  Google Scholar 

  44. Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. Photochemistry and photophysics of coordination compounds: iridium. In: Balzani V, Campagna S, editors. Photochemistry and photophysics of coordination compounds II. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. pp. 143–203.

  45. Grzeskowiak S, Narasimhan A, Rebeyev E, Joshi S, Brainard RL, Denbeaux G. Acid generation efficiency of EUV PAGs via low energy electron exposure. J Photopolym Sci Technol. 2016;29:453–8.

    CAS  Google Scholar 

  46. Podsiadły R, Podemska K, Szymczak AMJD. Novel visible photoinitiators systems for free-radical/cationic hybrid photopolymerization. Dyes and Pigments. 2011;91:422–6.

    Google Scholar 

  47. Jones G, Chatterjee SJTJoPC. Steric control of distance parameters and the yield of charge carriers in photochemical electron transfer. The quenching of eosin Y by hindered phenols. J Phys. Chem. 1988;92:6862–4.

    CAS  Google Scholar 

  48. Seely GR. The energetics of electron‐transfer reactions of chlorophyll and other compounds. Photochem Photobiol. 1978;27:639–54.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Funds for Distinguished Young Scholars (51625305) and the National Natural Science Foundation of China (51273187, 21474097, and 21801234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Zi You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Zhang, Z. & You, YZ. Visible light-induced living/controlled cationic ring-opening polymerization of lactones. Polym J 52, 1323–1331 (2020). https://doi.org/10.1038/s41428-020-0394-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0394-x

Search

Quick links