Skip to main content
Log in

Evolution of Elastic Properties of Ti and Its Alloys due to Severe Plastic Deformation

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper analyzes how the elastic properties of titanium and its alloys vary as their structure is transformed from coarse- to ultrafine-grained under severe plastic deformation. The analysis includes acoustic measurements of the elastic modulus of Ti materials with a piezoelectric composite oscillator over a wide amplitude range, a detailed examination of their microstructure by electron microscopy and electron backscatter diffraction, and estimations of their nanoporosity by small-angle X-ray scattering and their density by precision weighing before and after applying a high hydrostatic pressure (1.5 GPa). The results of the analysis show that such structural transformations can cause a noticeable change in the elastic properties of Ti materials due to dislocations, nanoporosity, high internal stress, and initial grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gleiter, H., Nanostructured Materials, Adv. Mater., 1992, vol. 4, no. 7–8, pp. 474–481.

  2. Estrin, Y. and Vinogradov, A., Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, vol. 61, no. 3, pp. 782–817.

  3. Shirooyeh, M., Xu, J., and Langdon, T.G., Microhardness Evolution and Mechanical Characteristics of Commercial Purity Titanium Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2014, vol. 614, pp. 223–231.

  4. Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., and Zhu, Y.T., Fundamentals of Superior Properties in Bulk NanoSPD Materials, Mater. Res. Lett., 2016, vol. 4, no. 1, pp. 1–21.

  5. Ungar, T., Alexandrov, I., and Zehetbauer, M., Ultrafine-Grained Microstructures Evolving during Severe Plastic Deformation, JOM, 2000, vol. 52, no. 4, pp. 34–36.

  6. Li, Z.M., Fu, L.M., Fu, B., and Shan, A.D., Effects of Annealing on Microstructure and Mechanical Properties of Nano-Grained Titanium Produced by Combination of Asymmetric and Symmetric Rolling, Mater. Sci. Eng. A, 2012, vol. 558, pp. 309–318.

  7. Shirooyeh, M., Xu, J., and Langdon, T., Microhardness Evolution and Mechanical Characteristics of Commercial Purity Titanium Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2014, vol. 614, pp. 223–231.

  8. Zhao, X.C., Yang, X.R., Liu, X.Y., Wang, C.T., Huang, Y., and Langdon, T.G., Processing of Commercial Purity Titanium by ECAP Using a 90 Degrees Die at Room Temperature, Mater. Sci. Eng. A, 2014, vol. 607, pp. 482–489.

  9. Sordi, V.L., Ferrante, M., Kawasaki, M., and Langdon, T.G., Microstructure and Tensile Strength of Grade 2 Titanium Processed by Equal-Channel Angular Pressing and by Rolling, J. Mater. Sci., 2012, vol. 47, no. 22, pp. 7870–7876.

  10. Hajizadeh, K. and Eghbali, B., Effect of Two-Step Severe Plastic Deformation on the Microstructure and Mechanical Properties of Commercial Purity Titanium, Met. Mater. Int., 2014, vol. 20, no. 2, pp. 343–350.

  11. Dheda, S.S. and Mohamed, F.A., Effect of Initial Microstructure on the Processing of Titanium Using Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2011, vol. 528, no. 28, pp. 8179–8186.

  12. Betekhtin, V.I., Kolobov, Yu.R., Golosova, O.A., Dvorak, J., Sklenicka, V., Kardashev, B.K., Kadomtsev, A.G., Narykova, M.V., and Ivanov, M.B., Elastic Modulus, Microplastic Properties and Durability of Titanium Alloys for Biomedical Applications, Rev. Adv. Mater. Sci., 2016, vol. 45, no. 1–2, pp. 42–51.

  13. Xie, K.Y., Wang, Y., Zhao, Y., Li, Ch., Wang, G., Chen, Z., Cao, Y., Liao, X., Lavernia, E.J., Valiev, R.Z., Sarrafpour, B., Zoellner, H., and Ringerab, S.P., Nanocrystalline Beta-Ti Alloy with High Hardness, Low Young’s Modulus and Excellent in Vitro Biocompatibility for Biomedical Applications, Mater. Sci. Eng. С, 2013, vol. 33, no. 6, pp. 3530–3536.

  14. Figueiredo, R.B., Barbosa, E.R., Zhao, X., Yang, X., Liu, X., Cetlin, P.R., and Langdon, T.G., Improving the Fatigue Behavior of Dental Implants through Processing Commercial Purity Titanium by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2014, vol. 619, pp. 312–318.

  15. Mishnaevsky, L., Levashov, E., Valiev, R.Z., Segurado, J., Sabirov, I., Enikeev, N., Prokoshkin, S., Solov’yov, A.V., Korotitskiy, A., Gutmanas, E., Gotman, I., Rabkin, E., Psakh’e, S., Dluhos, L., Seefeldt, M., and Smolin, A., Nanostructured Titanium-Based Materials for Medical Implants: Modeling and Development, Mater. Sci. Eng. R, 2014, vol. 81, pp. 1–19.

  16. Nikanorov, S.P. and Kardashev, B.K., Elasticity and Dislocation Inelasticity of Crystals, Moscow: Nauka, 1985.

  17. Betekhtin, V.I., Kadomtsev, A.G., Sklenicka, V., and Saxl, I., Nanoporosity of Fine-Crystalline Aluminum and an Aluminum-Based Alloy, Phys. Solid State, 2007, vol. 49, no. 10, pp. 1874–1877.

  18. Betekhtin, V.I., Kadomtsev, A.G., Kral, P., Dvorak, J., Svoboda, M., Saxl, I., and Sklenicka, V.,> Significance of Microdefects Induced by ECAP in Aluminium, Al–0.2% Sc Alloy and Copper, Mater. Sci. Forum, 2008, vol. 567–568, pp. 93–96.

  19. Betekhtin, V.I., Sklenicka, V., Saxl, I., Kardashev, B.K., Kadomtsev, A.G., and Narykova, M.V., Influence of the Number of Passes under Equal-Channel Angular Pressing on the Elastic-Plastic Properties, Durability, and Defect Structure of the Al + 0.2 wt % Sc Alloy, Phys. Solid State, 2010, vol. 52, no. 8, pp. 1629–1636.

  20. Betekhtin, V.I., Kolobov, Y.R., Narykova, M.V., Kardashev, B.K., Golosov, E.V., and Kadomtsev, A.G., Mechanical Properties, Density, and Defect Structure of VT1-0 Titanium after Intense Plastic Deformation due to Screw and Longitudinal Rollings, Tech. Phys., 2011, vol. 56, no. 11, p. 1599.

  21. Lapovok, R., Tomus, D., Mang, J., Estrin, Y., and Lowe, T.C., Evolution of Nanoscale Porosity during Equal-Channel Angular Pressing of Titanium, Acta Mater., 2009, vol. 57, no. 10, pp. 2909–2918.

  22. Ribbe, J., Schmitz, G., Rosner, H., Lapovok, R., Estrin, Y., Wilde, G., and Divinski, S.V., Effect of Back Pressure during Equal-Channel Angular Pressing on Deformation-Induced Porosity in Copper, Scripta Mater., 2013, vol. 68, no. 12, pp. 925–928.

  23. Betekhtin, V.I., Dvorak, J., Kadomtsev, A.G., Kardashev, B.K., Narykova, M.V., Raab, G.K., Sklenička, V., and Faizova, S.N., Durability and Static Strength of Microcrystalline Titanium VT1-0 Obtained by Equal-Channel Angular Pressing, Tech. Phys. Lett., 2015, vol. 41, no. 1, pp. 80–82.

  24. Betekhtin, V.I., Kolobov, Y.R., Golosova, O.A., Kardashev, B.K., Kadomtsev, A.G., Narykova, M.V., Ivanov, M.B., and Vershinina, T.N., Elastoplastic Properties of a Low-Modulus Titanium-Based Beta Alloy, Tech. Phys., 2013, vol. 58, no. 10, pp. 1432–1436.

  25. Kardashev, B.K., Betekhtin, V.I., Kadomtsev, A.G., Narykova, M.V., and Kolobov, Yu.R., Elastic and Microplastic Properties of Titanium in Different Structural States, Tech. Phys., 2017, vol. 62, no. 9, pp. 1372–1376.

  26. Gremaud, G., Dislocation–Point Defect Interactions, Mater. Sci. Forum, 2001, vol. 366–368, pp. 178–246.

  27. Chaim, R. and Hefetz, M., Effect of Grain Size on Elastic Modulus and Hardness of Nanocrystalline ZrO2–3 wt % Y2O3 Ceramic, J. Mater. Sci., 2004, vol. 39, no. 9, pp. 3057–3061.

  28. Huang, H. and Spaepen, F., Tensile Testing of Free-Standing Cu, Ag and Al Thin Films and Ag/Cu Multilayers, Acta Mater., 2000, vol. 48, no. 12, pp. 3261–3269.

  29. Zhu, K., Li, C., Zhu, Z., and Liu, C.S., Measurement of the Dynamic Young’s Modulus of Porous Titanium and Ti6Al4V, J. Mater. Sci., 2007, vol. 42, no. 17, pp. 7348–7353.

  30. >Chernov, V.M., Kardashev, B.K., Krjukova, L.M., Mamaev, L.I., Plaksin, O.A., Rusanov, A.E., Solonina, M.I., Stepanov, V.A., Votinova, S.N., and Zavialski, L.P., Internal Friction and Anelastic Properties of Vanadium and V-Ti-Cr Alloys, J. Nucl. Mater., 1998, vol. 257, no. 3, pp. 263–273.

  31. Dudarev, E.F., Pochivalova, G.P., Kolobov, Y.R., Kashin, O.A., Galkina, I.G., Girsova, N.V., and Valiev, R.Z., True Grain-Boundary Slipping in Coarse- and Ultrafine-Grained Titanium, Russ. Phys. J., 2004, vol. 47, pp. 617–625.

  32. Liu, Y.G., Zhou, J.Q., and Ling, X., Impact of Grain Size Distribution on the Multiscale Mechanical Behavior of Nanocrystalline Materials, Mater. Sci. Eng. A, 2010, vol. 527, no. 7–8, pp. 1719–1729.

  33. Alhajeri, S.N., Fox, A.G., and Langdon, T.G., A Convergent-Beam Electron Diffraction Study of Strain Homogeneity in Severely Strained Aluminum Processed by Equal-Channel Angular Pressing, Acta Mater., 2011, vol. 59, no. 19, pp. 7388–7395.

Download references

Funding

The work was supported by RFBR (project No. 18-08-00360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Narykova.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2019, Vol. 22, No. 3, pp. 71–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardashev, B.K., Narykova, M.V., Betekhtin, V.I. et al. Evolution of Elastic Properties of Ti and Its Alloys due to Severe Plastic Deformation. Phys Mesomech 23, 193–198 (2020). https://doi.org/10.1134/S1029959920030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959920030029

Keywords

Navigation