Skip to main content
Log in

Development of Chow Model for Tensile Modulus of Polymer Nanocomposites Assuming the Interphase Region and Particle Arrangement

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In this study, the conventional Chow model for the tensile modulus of polymer composites containing fully aligned particles is simplified and developed for polymer nanocomposites, taking into account the effects of interphase and particle arrangement. The results obtained from the developed model are compared to the experimental results of several samples containing spherical, layered, and cylindrical nanoparticles. The predictions of the developed model are in good agreement with the experimental data, whereas the calculations of the original model deviate. The moduli of nanocomposites reinforced with spherical nanoparticles depend on the properties of the interphase alone. Additionally, a low volume fraction of the interphase eliminates the effect of matrix Poisson’s ratio on the moduli of nanocomposites containing layered and cylindrical nanofillers. These results demonstrate the important role of the interphase in the mechanical behavior of polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zare, Y. and Rhee, K., Evaluation and Development of Expanded Equations Based on Takayanagi Model for Tensile Modulus of Polymer Nanocomposites Assuming the Formation of Percolating Networks, Phys. Mesomech., 2018, vol. 21, no. 4, pp. 351–357. https://doi.org/10.1134/S1029959918040094

  2. Badamshina, E.R., Goldstein, R.V., Ustinov, K.B., and Estrin, Ya.I., Strength and Fracture Toughness of Polyurethane Elastomers Modified with Carbon Nanotubes, Phys. Mesomech., 2018, vol. 21, no. 3, pp. 187–192. https://doi.org/10.1134/S1029959918030013

  3. Golovnev, I.F., Golovneva, E.I., and Utkin, A.V., A Study into the Temperature and Size Effects in Nanostructures on Their Fracture under External Mechanical Loads, Phys. Mesomech., 2018, vol. 21, no. 6, pp. 523–528. https://doi.org/10.1134/S1029959918060073

  4. Bochkarev, A.O. and Grekov, M.A., Influence of Surface Stresses on the Nanoplate Stiffness and Stability in the Kirsch Problem, Phys. Mesomech., 2019, vol. 22, no. 3, pp. 209–223. https://doi.org/10.1134/S1029959919030068

  5. Nikonov, A.Yu., Zharmukhambetova, A.M., Ponomareva, A.V., and Dmitriev, A.I., Numerical Study of Mechanical Properties of Nanoparticles of β-Type Ti-Nb Alloy under Conditions Identical to Laser Sintering. Multilevel Approach, Phys. Mesomech., 2018, vol. 21, no. 1, pp. 43–51. https://doi.org/10.1134/S102995991801006X

  6. Zare, Y. and Rhee, K.Y., Expression of Normal Stress Difference and Relaxation Modulus for Ternary Nanocomposites Containing Biodegradable Polymers and Carbon Nanotubes by Storage and Loss Modulus Data, Compos. B. Eng., 2019, vol. 158, pp. 162–168.

  7. Kim, S., Zare, Y., Garmabi, H., and Rhee, K.Y., Variations of Tunneling Properties in Poly (Lactic Acid)(PLA)/Poly (Ethylene Oxide)(PEO)/Carbon Nanotubes (CNT) Nanocomposites during Hydrolytic Degradation, Sens. Actuat. A. Phys., 2018, vol. 274, pp. 28–36.

  8. Farahi, A., Najafpour, G.D., and Ghoreyshi, A., Enhanced Ethanol Separation by Corona-Modified Surface MWCNT Composite PDMS/PES. PVP Membrane, JOM, 2019, vol. 71, pp. 285–293.

  9. Kalkhoran, A.H.Z., Vahidi, O., and Naghib, S.M., A New Mathematical Approach to Predict the Actual Drug Release from Hydrogels, Eur. J. Pharm. Sci., 2018, vol. 111, pp. 303–310.

  10. Askari, E. and Naghib, S.M., A Novel Approach to Facile Synthesis and Biosensing of the Protein-Regulated Graphene, Int. J. Electrochem. Sci., 2018, vol. 13, pp. 886–897.

  11. Seyfoori, A., Ebrahimi, S.S., Omidian, S., and Naghib, S.M., Multifunctional Magnetic ZnFe2O4-Hydroxyapatite Nanocomposite Particles for Local Anti-Cancer Drug Delivery and Bacterial Infection Inhibition: An in Vitro Study, J. Taiwan Inst. Chem. Eng., 2019, vol. 96, pp. 503–508.

  12. Raiisi-Nia, M.R., Aref-Azar, A., and Fasihi, M., Acrylonitrile–Butadiene Rubber Functionalization for the Toughening Modification of Recycled Poly (Ethylene Terephthalate, J. Appl. Polym. Sci., 2014, p. 131.

  13. Fasihi, M., Targhi, A.A., and Bayat, H., The Simultaneous Effect of Nucleating and Blowing Agents on the Cellular Structure of Polypropylene Foamed via the Extrusion Process, e-Polymers, 2016, vol. 16, pp. 235–241.

  14. Zare, Y., Park, S.P., and Rhee, K.Y., Analysis of Complex Viscosity and Shear Thinning Behavior in Poly (Lactic Acid)/Poly (Ethylene Oxide)/Carbon Nanotubes Biosensor Based on Carreau–Yasuda Model, Res. Phys., 2019, vol. 13, p. 102245.

  15. Zare, Y. and Rhee, K.Y., Evaluation of the Tensile Strength in Carbon Nanotube-Reinforced Nanocomposites Using the Expanded Takayanagi Model, JOM, 2019, pp. 1–9.

  16. Compton, B.G., Hmeidat, N.S., Pack, R.C., Heres, M.F., and Sangoro, J.R., Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy, JOM, 2018, vol. 70, pp. 292–297.

  17. Khalifa, M., Deeksha, B., Mahendran, A., and Anandhan,S., Synergism of Electrospinning and Nano-Alumina Trihydrate on the Polymorphism, Crystallinity and Piezoelectric Performance of PVDF Nanofibers, JOM, 2018, vol. 70, pp. 1313–1318.

  18. Javidi, Z., Tarashi, Z., Rostami, A., and Nazockdast, H., Role of Nanosilica Localization on Morphology Development of HDPE/PS/PMMA Immiscible Ternary Blends, eXPRESS Polym. Lett., 2017, vol. 11, pp. 362–373.

  19. Kalantari, E., Naghib, S.M., Naimi-Jamal, M.R., Aliahmadi, A., Iravani, N.J., and Mozafari, M., Nanostructured Monticellite for Tissue Engineering Applications. Part I: Microstructural and Physicochemical Characteristics, Ceram. Int., 2018, vol. 44, pp. 12731–12738.

  20. Kalantari, E., Naghib, S.M., Iravani, N.J., Aliahmadi, A., Naimi-Jamal, M.R., and Mozafari, M., Nanostructured Monticellite for Tissue Engineering Applications. Part II: Molecular and Biological Characteristics, Ceram. Int., 2018, vol. 44, pp. 14704–14711.

  21. Salahandish, R., Ghaffarinejad, A., Naghib, S.M., Niyazi, A., Majidzadeh-A, K., Janmaleki, M., and Sanati-Nezhad, A., Sandwich-Structured Nanoparticles-Grafted Functionalized Graphene Based 3D Nanocomposites for High-Performance Biosensors to Detect Ascorbic Acid Biomolecule, Sci. Rep., 2019, vol. 9, p. 1226.

  22. Rajaee, P., Ghasemi, F.A., Fasihi, M., and Saberian, M., Effect of Styrene-Butadiene Rubber and Fumed Silica Nano-Filler on the Microstructure and Mechanical Properties of Glass Fiber Reinforced Unsaturated Polyester Resin, Compos. B. Eng., 2019, vol. 173, p. 106803.

  23. Khoramishad, H., Khakzad, M., and Fasihi, M., The Effect of Outer Diameter of Multi-Walled Carbon Nanotubes on Fracture Behavior of Epoxy Adhesives, Sci. Iran. Trans. B. Mech. Eng., 2017, vol. 24, pp. 2952–2962.

  24. Zare, Y. and Rhee, K.Y., Modeling of Viscosity and Complex Modulus for Poly (Lactic Acid)/Poly (Ethylene Oxide)/Carbon Nanotubes Nanocomposites Assuming Yield Stress and Network Breaking Time, Compos. B. Eng., 2019, vol. 156, pp. 100–107.

  25. Naghib, S.M., Parnian, E., Keshvari, H., Omidinia, E., and Eshghan-Malek, M., Synthesis, Characterization and Electrochemical Evaluation of Polyvinylalchol/ Graphene Oxide/Silver Nanocomposites for Glucose Biosensing Application, Int. J. Electrochem. Sci., 2018, vol. 13, pp. 1013–1026.

  26. Omidinia, E., Naghib, S.M., Boughdachi, A., Khoshkenar, P., and Mills, D.K., Hybridization of Silver Nanoparticles and Reduced Graphene Nanosheets into a Nanocomposite for Highly Sensitive L-Phenylalanine Biosensing, Int. J. Electrochem. Sci., 2015, vol. 10, pp. 6833–6843.

  27. Daghigh, H. and Daghigh, V., Free Vibration of Size and Temperature-Dependent Carbon Nanotube (CNT)-Reinforced Composite Nanoplates with CNT Agglomeration, Polymer Compos., 2018.

  28. Lu, P., Leong, Y., Pallathadka, P., and He, C., Effective Moduli of Nanoparticle Reinforced Composites Considering Interphase Effect by Extended Double-Inclusion Model. Theory and Explicit Expressions, Int. J. Eng. Sci., 2013, vol. 73, pp. 33–55.

  29. Rafiee, R. and Pourazizi, R., Influence of CNT Functionalization on the Interphase Region between CNT and Polymer, Comput. Mater. Sci., 2015, vol. 96, pp. 573–578.

  30. Sisakht Mohsen, R., Saied, N.K., Ali, Z., Hosein, E.M., and Hasan, P., Theoretical and Experimental Determination of Tensile Properties of Nanosized and Micron-sized CaCO3/PA66 Composites, Polymer Compos., 2009, vol. 30, pp. 274–280.

  31. Hassanzadeh-Aghdam, M., Mahmoodi, M., Ansari, R., and Darvizeh, A., Interphase Influences on the Mechanical Behavior of Carbon Nanotube-Shape Memory Polymer Nanocomposites: A Micromechanical Approach, J. Intelligent Mater. Syst. Struct., 2018. https://doi.org/10.1177/1045389X18812704

  32. Amraei, J., Jam, J.E., Arab, B., and Firouz-Abadi, R.D., Modeling the Interphase Region in Carbon Nanotube-Reinforced Polymer Nanocomposites, Polymer Compos., 2019, vol. 40, pp. E1219–E1234.

  33. Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., and Ansari, R., Creep Performance of CNT Polymer Nanocomposites. An Emphasis on Viscoelastic Interphase and CNT Agglomeration, Compos. B. Eng., 2019, vol. 168, pp. 274–281.

  34. Zolfaghari, H., Silani, M., Yaghoubi, V., Jamshidian, M., and Hamouda, A.M., Stochastic Analysis of Interphase Effects on Elastic Modulus and Yield Strength of Nylon 6/Clay Nanocomposites, Int. J. Mech. Mater. Design., 2019, vol. 15, pp. 109–123.

  35. Hoseini, A.H.A., Arjmand, M., Sundararaj, U., and Trifkovic, M., Significance of Interfacial Interaction and Agglomerates on Electrical Properties of Polymer-Carbon Nanotube Nanocomposites, Mater. Design., 2017, vol. 125, pp. 126–134.

  36. Rostami, M., Mohseni, M., and Ranjbar, Z., An Attempt to Quantitatively Predict the Interfacial Adhesion of Differently Surface Treated Nanosilicas in a Polyurethane Coating Matrix Using Tensile Strength and DMTA Analysis, Int. J. Adhesion Adhesiv., 2012, vol. 34, pp. 24–31.

  37. Chow, T., Effect of Particle Shape at Finite Concentration on the Elastic Moduli of Filled Polymers, J. Polymer Sci. Polymer Phys. Ed., 1978, vol. 16, pp. 959–965.

  38. Zare, Y. and Garmabi, H., Attempts to Simulate the Modulus of Polymer/Carbon Nanotube Nanocomposites and Future Trends, Polymer Rev., 2014, vol. 54, pp. 377–400.

  39. Yanovsky, Yu.G., Kozlov, G.V., and Karnet, Yu.N., Fractal Description of Significant Nanoeffects in Polymer Composites with Nanosized Fillers. Aggregation, Phase Interaction, Reinforcement, Phys. Mesomech., 2013, vol. 16, no. 1, pp. 9–22.

  40. Chang, Y.W., Kim, S., and Kyung, Y., Poly (Butylene Terephthalate)–Clay Nanocomposites Prepared by Melt Intercalation: Morphology and Thermomechanical Properties, Polymer Int., 2005, vol. 54, pp. 348–353.

  41. Yeh, M.-K., Hsieh, T.-H., and Tai, N.-H., Fabrication and Mechanical Properties of Multi-Walled Carbon Nanotubes/Epoxy Nanocomposites, Mater. Sci. Eng. A, 2008, vol. 483, pp. 289–292.

  42. Zhang, G., Schlarb, A., Tria, S., and Elkedim, O., Tensile and Tribological Behaviors of PEEK/Nano-SiO2 Composites Compounded Using a Ball Milling Technique, Compos. Sci. Technol., 2008, vol. 68, pp. 3073–3080.

  43. Esbati, A. and Irani, S., Effect of Functionalized Process and CNTs Aggregation on Fracture Mechanism and Mechanical Properties of Polymer Nanocomposite, Mech. Mater., 2018, vol. 118, pp. 106–119.

  44. Paran, S.M.R., Abdorahimi, M., Shekarabi, A., Khonakdar, H.A., Jafari, S.H., and Saeb, M.R., Modeling and Analysis of Nonlinear Elastoplastic Behavior of Compatibilized Polyolefin/Polyester/Clay Nanocomposites with Emphasis on Interfacial Interaction Exploration, Composites Sci. Technol., 2018, vol. 154, pp. 92–103.

  45. Nikkhah, S.J., Moghbeli, M.R., and Hashemianzadeh, S.M., Dynamic Study of Deformation and Adhesion of an Amorphous Polyethylene/Graphene Interface: A Simulation Study, Macromol. Theory Simulations, 2016, vol. 25, pp. 533–549.

  46. Hansen, T.C., Influence of Aggregate and Voids on Modulus of Elasticity of Concrete, Cement Mortar, and Cement Paste, Proc. Am. Concr. Inst., 1965, vol. 62, pp. 193–216.

  47. Ji, X.L., Jiao, K.J., Jiang, W., and Jiang, B.Z., Tensile Modulus of Polymer Nanocomposites, Polymer Eng. Sci., 2002, vol. 42, pp. 983–994.

  48. Chen, H., Wang, M., Lin, Y., Chan, C.M., and Wu, J., Morphology and Mechanical Property of Binary and Ternary Polypropylene Nanocomposites with Nanoclay and CaCO3 Particles, J. Appl. Polymer Sci., 2007, vol. 106, pp. 3409–3416.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Rhee.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2019, Vol. 22, No. 5, pp. 62-69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. & Park, SJ. Development of Chow Model for Tensile Modulus of Polymer Nanocomposites Assuming the Interphase Region and Particle Arrangement. Phys Mesomech 23, 263–270 (2020). https://doi.org/10.1134/S102995992003011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995992003011X

Keywords

Navigation