Skip to main content
Log in

Influence of Tool Offset on Performance of Thin Al–Cu Dissimilar Metal Friction Stir Butt Welded Joint

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The 1-mm-thick Al to Cu friction stir welding is successfully performed at the tool offsets toward Al side ranging from 0 to 2 mm. With increasing tool offset, the phenomenon of material sticking to tool shoulder surface is restricted and the area of Al–Cu mixing zone is reduced progressively. As the tool offset is increased from 0 to 1 mm, the weld shows a variation of intermetallic phases from CuAl2 + Cu9Al4 to CuAl2 and exhibits a lowering in hardness and tensile properties. The 2-mm-offset weld without intermetallic phases discernible exhibits the highest hardness due to the thinness of Cu lamellar and Al-rich compound layers, and the joint featured by a failure at the relatively soft region adjacent to harder Al–Cu mixing zone in a ductile pattern shows the best tensile strength equivalent to 80% of that of the base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bergmann J P, Petzoldt F, Schurer R, and Schneider S, Weld World 57 (2013) 541.

    CAS  Google Scholar 

  2. Okamura H, and Aota K, Weld Int 18 (2004) 852.

    Google Scholar 

  3. Xue P, Ni D R, Wang D, Xiao B L, and Ma Z Y, Mater Sci Eng A 528 (2011) 4683.

    Google Scholar 

  4. Galvão I, Loureiro A, Verdera D, Gesto D, and Rodrigues D M, Metall Mater Trans A 43 (2012) 5096.

    Google Scholar 

  5. Liu H J, Shen J J, Zhou L, Zhao Y Q, Liu C, and Kuang L Y, Sci Technol Weld Join 16 (2011) 92.

    CAS  Google Scholar 

  6. Avettand-Fenoël M N, Taillard R, Ji G, and Goran D, Metall Mater Trans A 43 (2012) 4655.

    Google Scholar 

  7. Galvão I, Loureiro A, and Rodrigues D M, Sci Technol Weld Join 21 (2016) 523.

    Google Scholar 

  8. Yusof F, Firdaus A, Fadzil M, and Hamdi M, Ultra-Thin Friction Stir Welding (FSW) between Aluminum Alloy and Copper, 1st International Joint Symposium on Joining and Welding, Osaka (2013).

  9. Galvão I, Oliveira J C, Loureiro A, and Rodrigues D M, Sci Technol Weld Join 16 (2011) 681.

    Google Scholar 

  10. Galvão I, Leal R M, Loureiro A, and Rodrigues D M, Sci Technol Weld Join 15 (2010) 654.

    Google Scholar 

  11. Al-Roubaiy A O, Nabat S M, and Batako A D L, Int J Adv Manuf Technol 71 (2014) 1631.

    Google Scholar 

  12. Akinlabi E T, Andrews A, and Akinlabi S A, Trans Nonferrous Met Soc China 24 (2014) 1323.

    CAS  Google Scholar 

  13. Barekatain H, Kazeminezhad M, and Kokabi A H, J Mater Sci Technol 30 (2014) 826.

    CAS  Google Scholar 

  14. Xue P, Xiao B L, Ni D R, and Ma Z Y, Mater Sci Eng A 527 (2010) 5723.

    Google Scholar 

  15. Galvão I, Oliveira J C, Loureiro A, and Rodrigues D M, Intermetallics 22 (2012) 122.

    Google Scholar 

  16. Ouyang J H, Yarrapareddy E, and Kovacevic R, J Mater Process Technol 172 (2006) 110.

    CAS  Google Scholar 

  17. Rasaee S, Mirzaei A H, Almasi D, and Hayati S, Trans Indian Inst Met 71 (2018) 1553.

    CAS  Google Scholar 

  18. Saeid T, Abdollah-zadeh A, and Sazgari B, J Alloy Compd 490 (2010) 652.

    CAS  Google Scholar 

  19. Esmaeili A, Rajani H R Z, Sharbati M, Givi M K B, and Shamanian M, Intermetallics 19 (2011) 1711.

    CAS  Google Scholar 

  20. Tan C W, Jiang Z G, Li L Q, Chen Y B, and Chen X Y, Mater Des 51 (2013) 466.

    CAS  Google Scholar 

  21. Mehta K P, and Badheka V J, Mater Manuf Process 31 (2016) 255.

    CAS  Google Scholar 

  22. Genevois C, Girard M, Huneau B, Sauvage X, and Racineux G, Metall Mater Trans A 42 (2011) 2290.

    CAS  Google Scholar 

  23. Mehta K P, and Badheka V J, Mater Manuf Process 31 (2016) 233.

    CAS  Google Scholar 

  24. Sharma N, Khan Z A, and Siddiquee A N, Trans Nonferrous Met Soc China 27 (2017) 2113.

    CAS  Google Scholar 

  25. Akinlabi E T, Characterisation of Dissimilar Friction Stir Welds between 5754 Aluminum Alloy and C11000 Copper, Ph D Thesis, Nelson Mandela Metropolitant University, South Africa (2010).

  26. Threadgill P L, Leonard A J, Shercliff H R, and Withers P J, Int Mater Rev 54 (2009) 49.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to be supported by Natural Science Foundation of Hebei Province (No. E2020501021), Fundamental Research Funds for the Central Universities (No. N2023028), State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology (No. AWJ-19M04), and Program for the Top Young Talents of Higher Learning Institutions of Hebei Province (No. BJ2019201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Jie Zhang or Hui-Jie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HJ., Liu, HJ., Song, JL. et al. Influence of Tool Offset on Performance of Thin Al–Cu Dissimilar Metal Friction Stir Butt Welded Joint. Trans Indian Inst Met 73, 2549–2559 (2020). https://doi.org/10.1007/s12666-020-02060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02060-1

Keywords

Navigation