Skip to main content
Log in

Water Disinfection Using Chitosan Microbeads With N-, C-, C-N/TiO2 By Photocatalysis Under Visible Light

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Chitosan microbeads with C-doped TiO2, N-doped TiO2 and C,N-codoped TiO2 were prepared to obtain photocatalysts with higher photocatalytic efficiency, active under visible light and easy to removed from aqueous medium. TiO2 powders were synthesized by the sol–gel method and modified using glucose and ammonium nitrate as source of C and N, respectively. Scanning electron microscope (SEM), X-ray diffraction (XRD), DRUV–Vis spectra and Raman techniques, were used to characterize the modified TiO2 powders. The structural and physicochemical properties of the microbeads were analyzed by nitrogen physisorption, functional groups were identified by Fourier transform Infrared (FT-IR) spectroscopy and microbeads were observed by optical microscopy. The microbeads photocatalytic efficiency under visible light was evaluated monitoring the E. coli growth-inhibition, determined by colony count analysis (CFU—colony forming units). Results showed effectiveness in all tested composites to inhibit E. coli growth in 24 h under visible light. Furthermore chitosan microbeads with C,N-codoped TiO2 showed the best performance in the degradation test being the most effective composite to achieving 99.99% of E. coli growth inhibition in less than 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ananpattarachai J, Seraphin S, Kajitvichyanukul P (2016) Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light. Environ. Sci. Pollut. Res. 23:3884–3896. https://doi.org/10.1007/s11356-015-5570-8

    Article  CAS  Google Scholar 

  2. Chung CJ, Lin HI, Chou CM, Hsieh PY, Hsiao CH, Shi ZY, He JL (2009) Inactivation of Staphylococcus aureus and Escherichia coli under various light sources on photocatalytic titanium dioxide thin film. Surf. Coat. Technol. 203:1081–1085. https://doi.org/10.1016/j.surfcoat.2008.09.036

    Article  CAS  Google Scholar 

  3. Helali S, Polo-López MI, Fernández-Ibáñez P, Ohtani B, Amano F, Malato S, Guillard C (2013) Solar photocatalysis: a green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. J. Photochem. Photobiol. A Chem. 276:31–40. https://doi.org/10.1016/j.jphotochem.2013.11.011

    Article  CAS  Google Scholar 

  4. Adán C, Magnet A, Fenoy S, Pablos C, del Águila C, Marugán J (2018) Concomitant inactivation of Acanthamoeba spp. and Escherichia coli using suspended and immobilized TiO2. Water Res. 144:512–521. https://doi.org/10.1016/j.watres.2018.07.060

    Article  CAS  PubMed  Google Scholar 

  5. Aba-Guevara CG, Medina-Ramírez IE, Hernández-Ramírez A, Jáuregui-Rincón J, Lozano-Álvarez JA, Rodríguez-López JL (2017) Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light. Ceram. Int. 43:5068–5079. https://doi.org/10.1016/j.ceramint.2017.01.018

    Article  CAS  Google Scholar 

  6. Peng F, Cai L, Yu H, Wang H, Yang J (2008) Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J. Solid State Chem. 181:130–136. https://doi.org/10.1016/j.jssc.2007.11.012

    Article  CAS  Google Scholar 

  7. Sirirerkratana K, Kemacheevakul P, Chuangchote S (2019) Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets. J. Clean. Prod. 215:123–130. https://doi.org/10.1016/j.jclepro.2019.01.037

    Article  CAS  Google Scholar 

  8. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem. Rev. 114:9824–9852. https://doi.org/10.1021/cr5000738

    Article  CAS  PubMed  Google Scholar 

  9. Shao G-S, Zhang X-J, Yuan Z-Y (2008) Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2 – xNx. Appl. Catal. B Environ. 82:208–218. https://doi.org/10.1016/J.APCATB.2008.01.026

    Article  CAS  Google Scholar 

  10. Shao Y, Cao C, Chen S, He M, Fang J, Chen J, Li X, Li D (2015) Investigation of nitrogen doped and carbon species decorated TiO < inf > 2 with enhanced visible light photocatalytic activity by using chitosan. Appl. Catal. B Environ. 179:344–351. https://doi.org/10.1016/j.apcatb.2015.05.023

    Article  CAS  Google Scholar 

  11. Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B Environ. 91:355–361. https://doi.org/10.1016/j.apcatb.2009.06.001

    Article  CAS  Google Scholar 

  12. Cinelli G, Cuomo F, Ambrosone L, Colella M, Ceglie A, Venditti F, Lopez F (2017) Photocatalytic degradation of a model textile dye using carbon-doped titanium dioxide and visible light. J. Water Process. Eng. 20:71–77. https://doi.org/10.1016/j.jwpe.2017.09.014

    Article  Google Scholar 

  13. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144:51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  14. Caballero L, Whitehead KA, Allen NS, Verran J (2013) Photocatalytic inactivation of Escherichia coli using doped titanium dioxide under fluorescent irradiation. J. Photochem. Photobiol. A Chem. 276:50–57. https://doi.org/10.1016/j.jphotochem.2013.11.017

    Article  CAS  Google Scholar 

  15. Yousefali S, Reyhani A, Mortazavi SZ, Yousefali N, Rajabpour A (2018) UV-blue spectral down-shifting of titanium dioxide nano-structures doped with nitrogen on the glass substrate to study its anti-bacterial properties on the E. coli bacteria. Surfaces Interfaces 13:11–21. https://doi.org/10.1016/j.surfin.2018.07.003

    Article  CAS  Google Scholar 

  16. Farzana M, Meenakshi S (2013) Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by photodegradation technique. Ind. Eng. Chem. Res. 53:55–63

    Article  Google Scholar 

  17. Medina-Ramírez I, Liu JL, Hernández-Ramírez A, Romo-Bernal C, Pedroza-Herrera G, Jáuregui-Rincón J, Gracia-Pinilla MA (2014) Synthesis, characterization, photocatalytic evaluation, and toxicity studies of TiO2-Fe3+ nanocatalyst. J. Mater. Sci. 49:5309–5323. https://doi.org/10.1007/s10853-014-8234-z

    Article  CAS  Google Scholar 

  18. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. A Chem. 216:179–182. https://doi.org/10.1016/j.jphotochem.2010.07.024

    Article  CAS  Google Scholar 

  19. Al-Taweel SS, Saud HR, Kadhum AAH, Takriff MS (2019) The influence of titanium dioxide nanofiller ratio on morphology and surface properties of TiO2/chitosan nanocomposite. Results Phys. 13:102296. https://doi.org/10.1016/j.rinp.2019.102296

    Article  Google Scholar 

  20. Gomes AI, Santos JC, Vilar VJP, Boaventura RAR (2009) Inactivation of bacteria E. coli and photodegradation of humic acids using natural sunlight. Appl. Catal. B Environ. 88:283–291. https://doi.org/10.1016/j.apcatb.2008.11.014

    Article  CAS  Google Scholar 

  21. Ratiu IA, Railean Plugaru V, Pomastowski P, Milanowski M, Mametov R, Bocos-Bintintan V, Buszewski B (2019) Temporal influence of different antibiotics onto the inhibition of Escherichia coli bacterium grown in different media. Anal. Biochem. 585:113407. https://doi.org/10.1016/j.ab.2019.113407

    Article  CAS  PubMed  Google Scholar 

  22. Sharma B, Boruah PK, Yadav A, Das MR (2018) TiO2–Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. J. Environ. Chem. Eng. 6:134–145. https://doi.org/10.1016/j.jece.2017.11.025

    Article  CAS  Google Scholar 

  23. Cordero-García A, Guzmán-Mar JL, Hinojosa-Reyes L, Ruiz-Ruiz E, Hernández-Ramírez A (2016) Effect of carbon doping on WO3/TiO2 coupled oxide and its photocatalytic activity on diclofenac degradation. Ceram. Int. 42:9796–9803. https://doi.org/10.1016/j.ceramint.2016.03.073

    Article  CAS  Google Scholar 

  24. Than LD, Luong NS, Ngo VD, Tien NM, Dung TN, Nghia NM, Loc NT, Thu VT, Lam TD (2017) Highly visible light activity of nitrogen doped TiO2 prepared by sol–gel approach. J. Electron. Mater. 46:158–166. https://doi.org/10.1007/s11664-016-4894-6

    Article  CAS  Google Scholar 

  25. Kim JY, Choi WI, Kim YH, Tae G (2013) Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials 34:1170–1178. https://doi.org/10.1016/j.biomaterials.2012.09.047

    Article  CAS  PubMed  Google Scholar 

  26. Jaimy KB, Vidya K, Saraswathy HUN, Hebalkar NY, Warrier KGK (2015) Dopant-free anatase titanium dioxide as visible-light catalyst: facile sol–gel microwave approach. J. Environ. Chem. Eng. 3:1277–1286. https://doi.org/10.1016/j.jece.2014.06.023

    Article  CAS  Google Scholar 

  27. Hardwick LJ, Holzapfel M, Novák P, Dupont L, Baudrin E (2007) Electrochemical lithium insertion into anatase-type TiO2: an in situ Raman microscopy investigation. Electrochim. Acta 52:5357–5367. https://doi.org/10.1016/j.electacta.2007.02.050

    Article  CAS  Google Scholar 

  28. Baca M, Wenelska K, Mijowska E, Kaleńczuk RJ, Zielińska B (2020) Physicochemical and photocatalytic characterization of mesoporous carbon/titanium dioxide spheres. Diam. Relat. Mater. 101:107551. https://doi.org/10.1016/j.diamond.2019.107551

    Article  CAS  Google Scholar 

  29. Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 40:1119–1126. https://doi.org/10.1016/j.watres.2005.12.042

    Article  CAS  PubMed  Google Scholar 

  30. Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J, Sun J (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv. 5:14610–14630. https://doi.org/10.1039/c4ra13734e

    Article  CAS  Google Scholar 

  31. Atchudan R, Edison TNJI, Perumal S, Vinodh R, Lee YR (2018) In-situ green synthesis of nitrogen-doped carbon dots for bioimaging and TiO2 nanoparticles@nitrogen-doped carbon composite for photocatalytic degradation of organic pollutants. J. Alloys Compd. 766:12–24. https://doi.org/10.1016/j.jallcom.2018.06.272

    Article  CAS  Google Scholar 

  32. Baek S, Joo SH, Blackwelder P, Toborek M (2018) Effects of coating materials on antibacterial properties of industrial and sunscreen-derived titanium-dioxide nanoparticles on Escherichia coli. Chemosphere 208:196–206. https://doi.org/10.1016/j.chemosphere.2018.05.167

    Article  CAS  PubMed  Google Scholar 

  33. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465. https://doi.org/10.1021/bm034130m

    Article  CAS  PubMed  Google Scholar 

  34. Xiao G, Zhang X, Zhang W, Zhang S, Su H, Tan T (2015) Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan-TiO2 organic-inorganic composites for water disinfection. Appl. Catal. B Environ. 170–171:255–262. https://doi.org/10.1016/j.apcatb.2015.01.042

    Article  CAS  Google Scholar 

  35. Bui VKH, Park D, Lee YC (2017) Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobialwound healing applications: a mini review of the research trends. Polymers (Basel) 9:21. https://doi.org/10.3390/polym9010021

    Article  CAS  Google Scholar 

  36. Wang J, Fan C, Ren Z, Fu X, Qian G, Wang Z (2014) N-doped TiO2/C nanocomposites and N-doped TiO2 synthesised at different thermal treatment temperatures with the same hydrothermal precursor. Dalton Trans. 43:13783–13791. https://doi.org/10.1039/c4dt00924j

    Article  CAS  PubMed  Google Scholar 

  37. Miao Y, Xu X, Liu K, Wang N (2017) Preparation of novel Cu/TiO2 mischcrystal composites and antibacterial activities for Escherichia coli under visible light. Ceram. Int. 43:9658–9663. https://doi.org/10.1016/j.ceramint.2017.04.137

    Article  CAS  Google Scholar 

  38. Kamal T, Anwar Y, Khan SB, Chani MTS, Asiri AM (2016) Dye adsorption and bactericidal properties of TiO2/chitosan coating layer. Carbohydr. Polym. 148:153–160. https://doi.org/10.1016/j.carbpol.2016.04.042

    Article  CAS  PubMed  Google Scholar 

  39. Zhu H, Jiang R, Fu Y, Guan Y, Yao J, Xiao L, Zeng G (2012) Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286:41–48. https://doi.org/10.1016/j.desal.2011.10.036

    Article  CAS  Google Scholar 

  40. Nawi MA, Sabar S, Sheilatina (2012) Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO2/chitosan layer by layer system. J. Colloid Interface Sci. 372:80–87. https://doi.org/10.1016/j.jcis.2012.01.024

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the project CONACyT 285669. Special thank you to M. C Jorge Velázquez Velázquez for his support in the establishment of the E. coli crop. Aba-Guevara thanks to CONACyT by her postdoctoral grant. Gracia-Pinilla wants thanks to PAICyT-UANL for the Grant CE867-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Alicia Ramos Delgado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aba Guevara, C.G., Sanjuan Galindo, R., Gracia Pinilla, M.A. et al. Water Disinfection Using Chitosan Microbeads With N-, C-, C-N/TiO2 By Photocatalysis Under Visible Light. Top Catal 64, 142–154 (2021). https://doi.org/10.1007/s11244-020-01356-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01356-2

Keywords

Navigation