Skip to main content
Log in

Spectral Analysis of Forbush Decreases Using a New Yield Function

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The Forbush decreases of the cosmic ray intensity observed on 24 December 2014 and on 8 September 2017 were chosen for cosmic ray spectral analysis. At first an analytical study of the solar and geomagnetic parameters of these events was carried out due to the fact that both are typical cosmic ray events. Hourly cosmic ray data of the neutron monitor stations obtained from the high-resolution neutron monitor database were used for calculating the cosmic ray density and anisotropy variations. Following the method of the coupling coefficients, the galactic cosmic ray spectral index was calculated using the technique of Wawrzynczak and Alania (Adv. Space Res. 45, 622, 2010). A newly presented yield function by Mishev, Usoskin, and Kovaltsov (J. Geophys. Res. 118, 2783, 2013) including a geometrical correction factor, already used in the spectral analysis of the cosmic ray ground level enhancements, was applied for the first time to the case of Forbush decreases. A comparison of these results during the events is performed by using two other coupling functions: the function presented in the work of Clem and Dorman (Space Sci. Rev. 93, 335, 2000) and the one in the work of Belov and Struminsky (Proc. 25th Int. Cosmic Ray Conf. 1, 201, 1997). The latter includes an extension for neutron monitor stations with rigidity \(1~\mbox{GV} < R < 2.78~\mbox{GV}\). The obtained spectral index and the calculated cosmic ray intensity in the heliosphere during the two Forbush decreases after the coupling by these three functions are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al.: 2003, GEANT4 a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250. DOI.

    Article  ADS  Google Scholar 

  • Alania, M.V., Wawrzynczak, A.: 2008, Forbush decrease of the galactic cosmic ray intensity: experimental study and theoretical modeling. Astrophys. Space Sci. Trans. 4, 59. DOI.

    Article  ADS  Google Scholar 

  • Alania, M., Wawrzynczak, A.: 2012, Energy dependence of the rigidity spectrum of Forbush decrease of galactic cosmic ray intensity. Adv. Space Res. 50, 725. DOI.

    Article  ADS  Google Scholar 

  • Belov, A.V., Eroshenko, E.A.: 1996, The energy spectra and other properties of the great proton events during 22nd solar cycle. Adv. Space Res. 17, 167.

    Article  Google Scholar 

  • Belov, A.V., Struminsky, A.B.: 1997, Neutron monitor sensitivity to primary protons below 3 GeV derived from data of ground level events. Proc. 25th Int. Cosmic Ray Conf. 1, 201.

    Google Scholar 

  • Belov, A.V., Eroshenko, E.A., Livshits, M.A.: 1994, The energy spectra of the accelerated particles near the Earth and in the source in 15 June 1991 enhancement. Proc. 8th Intern. Symp. on Solar Terrestrial Physics Pt. 1, 26.

    Google Scholar 

  • Belov, A., Eroshenko, E., Mavromichalaki, H., Plainaki, C., Yanke, V.: 2005, Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956. Ann. Geophys. 23, 2281. DOI.

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1995, Interplanetary Magnetohydrodynamics, Oxford University Press, New York.

    Google Scholar 

  • Caballero-Lopez, R.A., Moraal, H.: 2012, Cosmic-ray yield and response functions in the atmosphere. J. Geophys. Res. 117, A12. DOI.

    Article  Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55. DOI.

    Article  ADS  Google Scholar 

  • Clem, J., Dorman, L.: 2000, Neutron monitor response functions. Space Sci. Rev. 93, 335. DOI.

    Article  ADS  Google Scholar 

  • Desorgher, L., Flückiger, E.O., Gurtner, M., Moser, M.R., Bütikofer, R.: 2005, Atmocosmics: a Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int. J. Mod. Phys. A 20, 6802. DOI.

    Article  ADS  Google Scholar 

  • Dorman, L.I.: 1963, Cosmic Rays Variations and Space Exploration, Nauka, Moscow.

    Google Scholar 

  • Dorman, L.I.: 2004, Cosmic Rays in the Earth’s Atmosphere and Underground, Kluwer, Dordrecht.

    Book  Google Scholar 

  • Dorman, L.I., Yanke, V.: 1981, The coupling functions of NM-64 neutron super monitor. Proc. 17th Int. Cosmic Ray Conf. 4, 326.

    Google Scholar 

  • Dorman, L.I., Villoresi, G., Iucci, N., Parisi, M., Tyasto, M.I., Danilova, O.A., Ptitsyna, N.G.: 2000, Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996-1997) 3. Geomagnetic effects and coupling functions. J. Geophys. Res. 105, 21047. DOI.

    Article  ADS  Google Scholar 

  • Flückiger, E.O., Moser, M.R., Pirard, B., Bütikofer, R., Desorgher, L.: 2008, A parameterized neutron monitor yield function for space weather applications. In: Caballero, R., D’Olivo, J., Medina-Tanco, G., Nellen, L., Sánchez, F., Valdés-Galicia, J. (eds.) Proc. 30th Intern. Cosmic Ray Conf. 1, 289.

    Google Scholar 

  • Forbush, S.: 1937, On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev. 51, 1108. DOI.

    Article  ADS  Google Scholar 

  • Hatton, C.J.: 1971, The neutron monitor. In: Wilson, J.G., Wouthuysen, S.A. (eds.) Processes in Elementary Particle and Cosmic Ray Physics, North-Holland, Amsterdam, 3.

    Google Scholar 

  • Hess, V.F., Demmelmair, A.: 1937, World-wide effect in cosmic ray intensity, as observed during a recent magnetic storm. Nature 140, 316. DOI.

    Article  ADS  Google Scholar 

  • Koldobskiy, S.A., Kovaltsov, G.A., Mishev, A.L., Usoskin, I.G.: 2019, New method of assessment of the integral fluence of solar energetic (> 1 GV rigidity) particles from neutron monitor data. Solar Phys. 294(7), 18. DOI.

    Article  Google Scholar 

  • Kurt, V., Belov, A., Kudela, K., Mavromichalaki, H., Kashapova, L., Yuskhov, B., Sgouropoulos, C.: 2019, Onset time of the GLE 72 observed at neutron monitors and its relation to electromagnetic emissions. Solar Phys. 294(22), 18. DOI.

    Article  ADS  Google Scholar 

  • Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., Abunina, M.: 2016, Solar activity parameters and associated Forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24. Solar Phys. 291, 1025. DOI.

    Article  ADS  Google Scholar 

  • Livada, M., Papaioannou, A., Mavromichalaki, H.: 2013, Galactic cosmic ray spectrum and effective radiation doses on flights during Forbush decreases. Proc. 11th HelAS Conf., S1-22.

    Google Scholar 

  • Livada, M., Mavromichalaki, H., Plainaki, C.: 2018, Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012. Astrophys. Space Sci. 363, 8. DOI.

    Article  ADS  Google Scholar 

  • Matthiä, D., Heber, B., Reitz, G., Meier, M., Sihver, L., Berger, T., Herbst, K.: 2009, Temporal and spatial evolution of the solar energetic particle event on 20 January 2005 and resulting radiation doses in aviation. J. Geophys. Res. 114, A08104. DOI.

    Article  ADS  Google Scholar 

  • Maurin, D., Cheminet, A., Derome, L., Ghelfi, A., Hubert, G.: 2015, Neutron monitors and muon detectors for solar modulation studies: interstellar flux, yield function, and assessment of critical parameters in count rate calculations. Adv. Space Res. 55, 363. DOI.

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Gerontidou, M., Paschalis, P., Paouris, E., Tezari, A., Sgouropoulos, C., Crosby, N., Dierckxsens, M.: 2018, Real-time detection of the ground level enhancement on 10 September 2017 by A.Ne.Mo.S.: System report. Space Weather 16, 1797. DOI.

    Article  ADS  Google Scholar 

  • Mishev, A.L., Usoskin, I.G., Kovaltsov, G.A.: 2013, Neutron monitor yield function: new improved computations. J. Geophys. Res. 118, 2783. DOI.

    Article  Google Scholar 

  • Mishev, A., Usoskin, I., Raukunen, O., Paassilta, M., Valtonen, E., Kocharov, L., Vainio, R.: 2018, First analysis of ground-level enhancement GLE72 on 10 September 2017: spectral and anisotropy characteristics. Solar Phys. 293, 136. DOI.

    Article  ADS  Google Scholar 

  • Moraal, H., Belov, A., Clem, J.M.: 2000, Design and co-ordination of multi-station international neutron monitor networks. Space Sci. Rev. 93, 285. DOI.

    Article  ADS  Google Scholar 

  • Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: 2002, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), 1468. DOI.

    Article  Google Scholar 

  • Plainaki, C., Belov, A., Eroshenko, E., Mavromichalaki, H., Yanke, V.: 2007, Modeling ground level enhancements: Event of 20 January 2005. J. Geophys. Res. 112, A04102. DOI.

    Article  ADS  Google Scholar 

  • Plainaki, C., Mavromichalaki, H., Laurenza, M., Gerontidou, M., Kanellakopoulos, A., Storini, M.: 2014, The ground level enhancement of 2012 May 17: derivation of solar proton event properties through the application of the NMBANGLE PPOLA model. Astrophys. J. 785, 160. DOI.

    Article  ADS  Google Scholar 

  • Shrivastava, P.: 2005, Study of large solar flares in association with halo coronal mass ejections and their helio-longitudinal association with Forbush decreases of the cosmic rays. Proc. 29th Intern. Cosmic Ray Conf. 1, 355.

    Google Scholar 

  • Smart, D.F., Shea, M.A., Tylka, A.J., Boberg, P.R.: 2006, A geomagnetic cutoff rigidity interpolation tool: Accuracy verification and application to space weather. Adv. Space Res. 37, 1206. DOI.

    Article  ADS  Google Scholar 

  • Stoker, P.H., Dorman, L.I., Clem, J.M.: 2000, Neutron monitor design improvements. Space Sci. Rev. 93, 361. DOI.

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Braun, I., Gladysheva, O.G., Horandel, J.R., Jamsen, T., Kovaltsov, G.A., Starodubtsev, S.A.: 2008, Forbush decreases of cosmic rays: Energy dependence of the recovery phase. J. Geophys. Res. 113, A07102. DOI.

    Article  ADS  Google Scholar 

  • Wawrzynczak, A., Alania, M.: 2010, Modeling and data analysis of a Forbush decrease. Adv. Space Res. 45, 622. DOI.

    Article  ADS  Google Scholar 

  • Yasue, S., Mori, S., Sakakibara, S.: 1982, Coupling coefficients of cosmic rays daily variations for neutron monitor stations. Rep. Cosmic Ray Res. Lab. 7, Nagoya Univ.

Download references

Acknowledgements

Many thanks are due to our collaborators of the neutron monitor stations for kindly providing the cosmic ray data used in this work from the High-resolution real-time Neutron Monitor database (NMDB), funded under the European Union FP7 Program (contract no. 213007). A.Ne.Mo.S. is supported by the Special Research Account of the National and Kapodistrian University of Athens. Thanks are also due to the editor and the anonymous referee of the Solar Physics for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mavromichalaki.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there is not conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livada, M., Mavromichalaki, H. Spectral Analysis of Forbush Decreases Using a New Yield Function. Sol Phys 295, 115 (2020). https://doi.org/10.1007/s11207-020-01679-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01679-z

Keywords

Navigation