Skip to main content
Log in

Quantitative Multi-Element Analysis in Soil Using 532 nm and 1064 nm Lasers in LIBS Technique

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been considered a promising tool for agricultural analysis in the recent years due to its advantages over traditional techniques, such as fewer sample preparations and faster measurements. An adequate choice of equipment and optimization of parameters for measurements in soils becomes an important issue aiming at a better performance of the technique. The performance of two LIBS systems, using a monomode laser at 532 nm and a multimode laser at 1064 nm, were evaluated for soil analysis. The craters formed in the sample by action of the laser pulses studied by Scanning electron microscopy (SEM) aimed to analyze the efficiency of the lasers in the ablation process. The plasma temperature and electronic density, evaluated using the Saha-Boltzmann method, were similar for both lasers. The lower boundary of the Local thermodynamic equilibrium (LTE) condition was verified for both lasers. The signal-to-noise ratio (SNR) was analyzed for many emission lines of important elements of the soil, such as C, Fe, Mg, and K. Partial least square (PLS) analysis was used to verify the performance of both lasers for the quantitative analysis. From the PLS analysis, a better performance for the elemental quantification as found to 1064 nm laser and compared to 532 nm laser, i. e, higher coefficient R, a small Root Mean Square Error of Calibration (RMSEC) for C, K and Mg, and small Root Mean Square Error of Prediction (RMSEP) for K and Mg. In conclusion, the results suggesting the use of a multimode Laser at 1064 nm hence are more accessible, and less expensive, than a monomode Laser at 532 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. King A (2017) Nature 544:S21–23

    Article  CAS  Google Scholar 

  2. Peng J, Liu F, Zhou F, Song K, Zhang C, Ye L, He Y (2016) Trends Anal Chem 85:260–272

    Article  CAS  Google Scholar 

  3. Nicolodelli G (2019) Cabral J, Menegatti CR, Marangoni B, Senesi GS. TrAC, Trends Anal Chem 115:70–82

    Article  CAS  Google Scholar 

  4. Senesi GS, Cabral J, Menegatti CR, Marangoni B, Nicolodelli G (2019) TrAC Trends Anal Chem 118:453–469

    Article  CAS  Google Scholar 

  5. Ismaël A, Bousquet B, Michel-Le Pierrès K, Travaillé G, Canioni L, Roy S (2011) Appl Spectrosc 65:467–473

    Article  Google Scholar 

  6. Martin MZ, Mayes MA, Heal KR, Brice DJ, Wullschleger SD (2013) Spectrochim Acta B Atomic Spectrosc 87:100–107

    Article  CAS  Google Scholar 

  7. Marangoni BS, Silva KSG, Nicolodelli G, Senesi GS, Cabral JS, Villas-Boas PR, Silva CS, Teixeira PC, Nogueira ARA, Benites VM, Milori DMBP (2016) Anal Methods 8:78–82

    Article  CAS  Google Scholar 

  8. Russel SH, Russo RE, Hark RR (2013) Spectrochimica Acta B: atomic spectroscopy 87:11–26

    Article  Google Scholar 

  9. Rühlmann M, Büchele D, Ostermann M, Bald I, Schmid T (2018) Spectrochim Acta B Atomic Spectrosc 146:115–121

    Article  Google Scholar 

  10. Nicolodelli G, Senesi GS, Romano RA, Cabral J, Perazzoli ILO, Marangoni BS, Villas-Boas PR, Milori DMBP (2017) Appl Phys B 123:123–127

    Article  Google Scholar 

  11. Meng D, Zhao N, Ma M, Fang L, Gu Y, Jia Y, Liu J, Liu W (2017) Appl Opt 56:5204–5210

    Article  CAS  Google Scholar 

  12. Nicolodelli G, Senesi GS, Perazzoli ILO, Marangoni BS, Benites VM, Milori DMBP (2016) Sci Total Environ 565:1116–1123

    Article  CAS  Google Scholar 

  13. Nicolodelli G, Marangoni BS, Cabral J, Villas-Boas PR, Senesi GS, dos Santos CH, Romano RA, Segnini A, Lucas Y, Montes CR, Milori DMBP (2014) Appl Opt 53:2170–2176

    Article  CAS  Google Scholar 

  14. Ankaran S, Ehsani R, Morgan KT (2015) Appl Spectrosc 69:913–919

    Article  Google Scholar 

  15. Cremers DA, Radziemsky LJ (2013) Handbook of laser-induced breakdown spectroscopy, 2nd edn. Wiley, New York

    Book  Google Scholar 

  16. Noll R (2012) Laser-induced breakdown spectroscopy: fundamentals and applications. Springer, Heidelberg

    Book  Google Scholar 

  17. Miziolek AW, Palleschi V, Schechter I (2008) Laser-induced breakdown spectroscopy. Cambridge University Press, Cambridge

    Google Scholar 

  18. Hahn DW, Omenetto N (2010) Appl Spectrosc 64:335–366

    Article  Google Scholar 

  19. Nicolodelli G, Senesi GS, Romano RA, Perazzoli ILO, Milori DMBP (2015) Spectrochim Acta B Atomic Spectrosc 111:23–29

    Article  CAS  Google Scholar 

  20. Benedetti PA, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E (2005) Spectrochim Acta Part B 60:1392–1401

    Article  Google Scholar 

  21. Nicolodelli G, Senesi GS, Ranulfi AC, Marangoni BS, Watanabe A, Benites VM, Oliveira PPA, Villas-Boas PR, Milori DMBP (2017) Microchem J 133:272–278

    Article  CAS  Google Scholar 

  22. Colao F, Fantoni R, Lazic V, Paolini A (2004) Appl Phys A Mater Sci Process 79:143–152

    Article  CAS  Google Scholar 

  23. Mao XL, Ciocan AC, Borisov OV, Russo RE (1998) Appl Surf Sci 127:262–268

    Article  Google Scholar 

  24. Mao XL, Ciocan AC, Russo RE (1998) Appl Spectrosc 52:913–918

    Article  CAS  Google Scholar 

  25. Barnett C, Cahoon E, Almirall JR (2008) Spectrochim Acta B Atomic Spectrosc 63:1016–1023

    Article  Google Scholar 

  26. Berman LM, Wolf PJ (1998) Appl Spectrosc 52:438–443

    Article  CAS  Google Scholar 

  27. Cabalin LM, Laserna JJ (1998) Spectrochim Acta B Atomic Spectrosc 53:723–730

    Article  Google Scholar 

  28. Elsherbiny N, Nassef OA (2015) Sci Justice 55:254–263

    Article  Google Scholar 

  29. Galbács G (2015) Anal Bioanal Chem 407:7537–7562

    Article  Google Scholar 

  30. ELHaddad J, Canioni L, Bousquet B (2014) Spectrochim Acta B Atomic Spectrosc 101:171–182

    Article  CAS  Google Scholar 

  31. Corsi M, Cristoforetti G, Hidalgo M, Iriarte D, Legnaioli S, Palleschi V, Salvetti A, Tognoni E (2005) Appl Spectrosc 59:853–860

    Article  CAS  Google Scholar 

  32. Liu HC, Mao XL, Yoo JH, Russo RE (1999) Appl Phys Lett 75:1216

    Article  CAS  Google Scholar 

  33. Saha MN (1921) Proceed Royal Soc A 99:135–153

    CAS  Google Scholar 

  34. Zhang S, Wang X, He M, Jiang Y, Zhang B, Hang W, Huang B (2014) Spectrochim Acta B 97:13–33

    Article  CAS  Google Scholar 

  35. Cristoforetti G, Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N (2009) Spectrochim Acta B Atomic Spectrosc 65:86–95

    Article  Google Scholar 

  36. Segnini A, Xavier AAP, Otaviani-Junior PL, Ferreira EC, Watanabe AM, Sperança MA, Nicolodelli G, Villas-Boas PR, Oliveira PPA, Milori DMBP (2014) Am J Anal Chem 5:722–729

    Article  CAS  Google Scholar 

  37. Menegatti CR, Nicolodelli G, Senesi GS, Silva OA, Filho HJI, Villas Boas PR, Marangoni BS, Milori DMBP (2017) Appl Opt 56:3730–3735

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to Embrapa for the technical support and Capes for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to G Nicolodelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of Data and Material (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krüger, A.L., Nicolodelli, G., Villas-Boas, P.R. et al. Quantitative Multi-Element Analysis in Soil Using 532 nm and 1064 nm Lasers in LIBS Technique. Plasma Chem Plasma Process 40, 1417–1427 (2020). https://doi.org/10.1007/s11090-020-10116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10116-9

Keywords

Navigation