Skip to main content
Log in

RETRACTED ARTICLE:Recent progress on rubrene as active layer in organic field-effect transistors

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

This article was retracted on 18 August 2021

This article has been updated

Abstract

Organic field-effect transistor (OFET) is kind of organic electronic devices, which consists of gate insulator layer, an active layer, and 3 electrodes (source, gate electrodes, and drain). Among them, the active layer as a key part has been widely concerned by scientific researchers. Rubrene, as a member of the star molecules, has been widely studied. Rubrene exhibits attractive properties, for instance, having one of the utmost reported transistor mobilities at room temperature, and the crystal growth mode is different in different solvents and so on. This paper summarized several methods for producing high-performance single-crystal transistors. The objective of this problem is to offer an extensive overview of rubrene as active layer in OFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Briseno AL, Tseng RJ, Ling MM, Falcao EHL, Yang Y, Wudl F, Bao Z (2006) High-performance organic single-crystal transistors on flexible substrates. Adv Mater 18:2320–2324

    Article  CAS  Google Scholar 

  • del Pozo FG, Fabiano S, Pfattner R, Georgakopoulos S, Galindo S, Liu X, Braun S, Fahlman M, Veciana J, Rovira C, Crispin X, Berggren M, Mas-Torrent M (2016) Single crystal-like performance in solution-coated thin-film organic field-effect transistors. Adv Funct Mater 26:2379–2386

    Article  Google Scholar 

  • Hulea IN, Fratini S, Xie H, Mulder CL, Iossad NN, Rastelli G, Ciuchi S, Morpurgo AF (2006) Tunable Fröhlich polarons in organic single-crystal transistors. Nat Mater 5:982–986

    Article  CAS  Google Scholar 

  • Jurchescu OD, Meetsma A, Palstra TT (2006) Low-temperature structure of rubrene single crystals grown by vapor transport. Acta Crystallogr B 62:330–334

    Article  Google Scholar 

  • Kloc C, Simpkins PG, Siegrist T, Laudise RA (1997) Physical vapor growth of centimeter-sized crystals of α-hexathiophene. J Cryst Growth 182:416–427

    Article  CAS  Google Scholar 

  • Kloc C, Tan KJ, Toh ML, Zhang KK, Xu YP (2008) Appl Phys A 95:219–224

    Article  Google Scholar 

  • Konezny SJ, Bussac MN, Zuppiroli L (2010) Phys Rev B:81

  • Laudise RA, Kloc C, Simpkins PG (1998) T. Siegrist 187:449–454

    CAS  Google Scholar 

  • Mastrogiovanni DD, Mayer J, Wan AS, Vishnyakov A, Neimark AV, Podzorov V, Feldman LC, Garfunkel E (2014) Sci Rep 4:4753

    Article  CAS  Google Scholar 

  • Matsukawa T, Yoshimura M, Uchiyama M, Yamagishi M, Nakao A, Takahashi Y, Takeya J, Kitaoka Y, Mori Y, Sasaki T (2010) Polymorphs of rubrene crystal grown from solution. Jpn J Appl Phys 49:085502

    Article  Google Scholar 

  • Ono S, Miwa K, Seki S, Takeya J (2009) A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl Phys Lett 94:063301

    Article  Google Scholar 

  • Podzorov V, Sysoev SE, Loginova E, Pudalov VM, Gershenson ME (2003a) Single-crystal organic field effect transistors with the hole mobility ∼8 cm2/V s. Appl Phys Lett 83:3504–3506

    Article  CAS  Google Scholar 

  • Podzorov V, Pudalov VM, Gershenson ME (2003b) Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl Phys Lett 82:1739–1741

    Article  CAS  Google Scholar 

  • Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers JA, Gershenson ME (2004) Intrinsic charge transport on the surface of organic semiconductors. Phys Rev Lett 93:086602

    Article  CAS  Google Scholar 

  • Reyes-Martinez MA, Crosby AJ, Briseno AL (2015) Rubrene crystal field-effect mobility modulation via conducting channel wrinkling. Nat Commun 6:6948

    Article  CAS  Google Scholar 

  • Sokolov AN, Tee BC, Bettinger CJ, Tok JB, Bao Z (2012) Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc Chem Res 45:361–371

    Article  CAS  Google Scholar 

  • Stassen AF, de Boer RWI, Iosad NN, Morpurgo AF (2004) Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Appl Phys Lett 85:3899–3901

    Article  CAS  Google Scholar 

  • Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303:1644–1646

    Article  CAS  Google Scholar 

  • Takeya J, Yamagishi M, Tominari Y (2007) Appl Phys Lett:90

  • Tan HH, Ullah AR, Chiao J-C, Micolich AP, Cochrane JW, Faraone L, Jagadish C, Hamilton AR, Williams J, Wilson AR (2007) 6800:680005

  • Taylor WH (1936) Crystal Mater 93:151–155

    CAS  Google Scholar 

  • Wang H, Deng L, Tang Q, Tong Y, Liu Y (2017) Flexible organic single-crystal field-effect transistor for ultra-sensitivity strain sensing. IEEE Electron Device Lett 38:1598–1601

    Article  CAS  Google Scholar 

  • Xie W, McGarry KA, Liu F, Wu Y, Ruden PP, Douglas CJ, Frisbie CD (2013) High-mobility transistors based on single crystals of isotopically substituted rubrene-d28. J Phys Chem C 117:11522–11529

    Article  CAS  Google Scholar 

  • Yokota Y, Hara H, Morino Y, Bando K-i, Ono S, Imanishi A, Okada Y, Matsui H, Uemura T, Takeya J, Fukui K-i (2016) Gradual improvements of charge carrier mobility at ionic liquid/rubrene single crystal interfaces. Appl Phys Lett 108:083113

    Article  Google Scholar 

  • Zeis R, Besnard C, Siegrist T, Schlockermann C, Chi XL, Kloc C (2006) Field effect studies on rubrene and impurities of rubrene. Chem Mater 18:244–248

    Article  CAS  Google Scholar 

  • Zeng X, Zhang D, Duan L, Wang L, Dong G, Qiu Y (2007) Morphology and fluorescence spectra of rubrene single crystals grown by physical vapor transport. Appl Surf Sci 253:6047–6051

    Article  CAS  Google Scholar 

  • Zhang P, Zeng X, Deng J, Huang K, Bao F, Qiu Y, Xu K, Zhang J (2010a) Growth mechanism of large-size rubrene single crystals grown by a solution technique. Jpn J Appl Phys 49:095501

    Article  Google Scholar 

  • Zhang KK, Tan K, Zou C, Wikberg M, McNeil LE, Mhaisalkar SG, Kloc C (2010b) Control of charge mobility in single-crystal rubrene through surface chemistry. Org Electron 11:1928–1934

    Article  CAS  Google Scholar 

  • Zhang C, Xu Z, Yan H, Gao F, Yuan S (2013) Deposition behavior onto different template structures and step-edge induced area-selective growth of rubrene: a molecular dynamics study. Chem Phys Lett 571:38–43

    Article  CAS  Google Scholar 

  • Zimmerling T, Batlogg B (2014) Improving charge injection in high-mobility rubrene crystals: from contact-limited to channel-dominated transistors. J Appl Phys 115:164511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Gu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Role of Nanotechnology and Internet of Things in Healthcare

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s11051-021-05235-z

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W. RETRACTED ARTICLE:Recent progress on rubrene as active layer in organic field-effect transistors. J Nanopart Res 22, 249 (2020). https://doi.org/10.1007/s11051-020-04975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04975-8

Keywords

Navigation