Skip to main content
Log in

Genome-wide identification and expression analysis of the Citrus malectin domain-containing receptor-like kinases in response to arbuscular mycorrhizal fungi colonization and drought

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Malectin-like domain-containing receptor-like kinases (MRLKs) compose a big and diverse protein family in plants that plays significant roles in biotic and abiotic stress response. However, the MRLK family members in Citrus, as well as their roles during drought stress (abiotic stress) and arbuscular mycorrhizal fungi (AMF) colonization, remain relatively unknown. In the present study, we characterized the MRLK family genes in Citrus. By analyzing the presence of malectin-like domains and searching through the Citrus genome, we identified 47 CsMRLKs located within nine chromosomes, with most CsMRLKs mainly located on chromosome 1. These 47 CsMRLK family members were classified into 6 subfamilies with distinct malectin domains. Gene expression analysis showed that all 47 CsMRLKs were expressed in the roots and exhibited differential expression patterns. During the drought stress response, CsMRLK6, 7, 8, 9, 10, 11, 19, 25, 26, and 40 were downregulated. AMF colonization downregulated the expression of CsMRLK6, 10, 11, 12, 14, 17, 20, 30, 35, 43, and 47 and upregulated the expression of CsMRLK2, 5, 13, 21, 22, 28, 29, 32, 38, 41, 45, and 46. In addition, AMF colonization and drought stress showed a synergistic effect, in which the downregulated genes became even more weakened and the upregulated genes became even more enhanced. The present study offers useful perception into the Citrus MRLK gene family and its responses in AMF colonization and drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antolín-Llovera M, Petutsching EK, Ried MK, Lipka V, Nürnberger T, Robatzek S, Parniske M (2014a) Knowing your friends and foes–plant receptor-like kinases as initiators of symbiosis or defense. New Phytol 204:791–802

    Article  PubMed  CAS  Google Scholar 

  • Antolín-Llovera M, Ried MK, Parniske M (2014b) Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE ectodomain promotes complex formation with Nod factor receptor 5. Curr Biol 24:422–427

    Article  PubMed  CAS  Google Scholar 

  • Boisson-Dernier A, Kessler SA, Grossniklaus U (2011) The walls have ears: the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot 62:1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Capoen W, Goormachtig S, De Rycke R, Schroeyers K, Holsters M (2005) SrSymRK, a plant receptor essential for symbiosome formation. P Natl Acad Sci USA 102:10369–10374

    Article  CAS  Google Scholar 

  • Chen C, Xia R, Chen H, He YT (2018) A toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv. https://doi.org/10.1101/289660

  • Deslauriers SD, Larsen PB (2010) FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol Plant 3:626–640

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franck CM, Westermann J, Boisson-Dernier A (2018) Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol 69:301–328

    Article  PubMed  CAS  Google Scholar 

  • Gachomo EW, Baptiste LJ, Kefela T, Saidel WM, Kotchoni SO (2014) The Arabidopsis CURVY1 (CVY1) gene encoding a novel receptor-like protein kinase regulates cell morphogenesis, flowering time and seed production. BMC Plant Biol 14:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) Expasy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gobbato E (2015) Recent developments in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 26:1–7

    Article  PubMed  Google Scholar 

  • Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y (2009) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. P Natl Acad Sci USA 106:7648–7653

    Article  CAS  Google Scholar 

  • Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, Yin Y (2018) FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol 28:3316–3324

    Article  PubMed  CAS  Google Scholar 

  • Hématy K, Höfte H (2008) Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol 11:321–328

    Article  PubMed  CAS  Google Scholar 

  • Hématy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou J, Höfte H (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17:922–931

    Article  PubMed  CAS  Google Scholar 

  • Hok S, Danchin EG, Allasia V, Panabieres F, Attard A, Keller H (2011) An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. Plant Cell Environ 34:1944–1957

    Article  PubMed  CAS  Google Scholar 

  • Indrasumunar A, Wilde J, Hayashi S, Li D, Gresshoff PM (2015) Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max). J Plant Physiol 176:157–168

    Article  PubMed  CAS  Google Scholar 

  • Jing X, Shalmani A, Zhou M, Shi P, Muhammad I, Shi Y, Sharif R, Li W, Liu W, Chen K (2020) Genome-wide identification of malectin/malectin-like domain containing protein family genes in rice and their expression regulation under various hormones, abiotic stresses, and heavy metal treatments. J Plant Growth Regul 39:492–506

    Article  CAS  Google Scholar 

  • Kanaoka MM, Torii KU (2010) FERONIA as an upstream receptor kinase for polar cell growth in plants. Proc Natl Acad Sci USA 107:17461–17462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Keinath NF, Kierszniowska S, Lorek J, Bourdais G, Kessler SA, Shimosato-Asano H, Grossniklaus U, Schulze WX, Robatzek S, Panstruga R (2010) PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J Biol Chem 285:39140–39149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–971

    Article  PubMed  CAS  Google Scholar 

  • Kessler SA, Lindner H, Jones DS, Grossniklaus U (2015) Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16:107–115

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liao H, Tang R, Zhang X, Luan S, Yu F (2017) FERONIA receptor kinase at the crossroads of hormone signaling and stress responses. Plant Cell Physiol 58:1143–1150

    Article  PubMed  CAS  Google Scholar 

  • Lindner H, Müller LM, Boisson-Dernier A, Grossniklaus U (2012) CrRLK1L receptor-like kinases: not just another brick in the wall. Curr Opin Plant Biol 15:659–669

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mao D, Yu F, Li J, Van de Poel B, Tan D, Li J, Liu Y, Li X, Dong M, Chen L, Li D, Luan S (2015) FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ 38:2566–2574

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M (2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Nissen KS, Willats WG, Malinovsky FG (2016) Understanding CrRLK1L function: cell walls and growth control. Trends Plant Sci 21:516–527

    Article  PubMed  CAS  Google Scholar 

  • Qu S, Zhang X, Song Y, Lin J, Shan X (2017) THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. J Integr Plant Biol 59:797–804

    Article  PubMed  CAS  Google Scholar 

  • Ringli C (2010) Monitoring the outside: cell wall-sensing mechanisms. Plant Physiol 153:1445–1452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schallus T, Jaeckh C, Fehér K, Palma AS, Liu Y, Simpson JC, Mackeen M, Stier G, Gibson TJ, Feizi T, Pieler T, Muhle-Goll C (2008) Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell 19:3404–3414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson MH, Nikonorova N, Vu LD, Smet ID, Swarup R, De Vos WH, Pintelon I, Adriaensen D, Grierson C, Bennett MJ, Vissenberg K (2018) The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth. Curr Biol 28:722–732

    Article  PubMed  CAS  Google Scholar 

  • Seifert GJ, Blaukopf C (2010) Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 153:467–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shih H, Miller ND, Dai C, Spalding EP, Monshausen GB (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 24:1887–1892

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shu B, Xia RX, Wang P (2012) Differential regulation of Pht1 phosphate transporters from trifoliate orange (Poncirus trifoliata L. Raf) seedlings. Sci Hortic-Amsterdam 146:115–123

    Article  CAS  Google Scholar 

  • Shu B, Li WC, Liu LQ, Wei YZ, Shi SY (2016) Transcriptomes of arbuscular mycorrhizal fungi and litchi host interaction after tree girdling. Front Microbiol 7:408

    PubMed  PubMed Central  Google Scholar 

  • Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir Y, Zipfel C (2017) The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–289

    Article  PubMed  CAS  Google Scholar 

  • Steinwand BJ, Kieber JJ (2010) The role of receptor-like kinases in regulating cell wall function. Plant Physiol 153:479–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan Z, Hu Y, Lin Z (2013) Expression of SYMRK affects the development of arbuscular mycorrhiza in tobacco roots. Acta Physiol Plant 35:85–94

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annual Rev Plant Biol 63:381–407

    Article  CAS  Google Scholar 

  • Yang T, Wang L, Li C, Liu Y, Zhu S, Qi Y, Liu X, Lin Q, Luan S, Yu F (2015) Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochem Bioph Res Commun 465:77–82

    Article  CAS  Google Scholar 

  • Yu F, Li J, Huang Y, Liu L, Li D, Chen L, Luan S (2014) FERONIA receptor kinase controls seed size in Arabidopsis thaliana. Mol Plant 7:920–922

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Jia M, Xing Y, Qin L, Li B, Jia W (2016) Genome-wide identification and expression analysis of MRLK family genes associated with strawberry (Fragaria vesca) fruit ripening and abiotic stress responses. PLoS ONE 11:e0163647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Zou YN, Wu QS, Kuča K (2019) Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ Exp Bot 171:103926

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Foundation for doctor of Yangtze University (No. 802100270303).

Author information

Authors and Affiliations

Authors

Contributions

Chun Luo: conceived the experiments and wrote the manuscript. Chun Luo, Bo Shu, Fei Zhang: carried out the experiments. Chun Luo, Qiaofeng Sun, Dejian Zhang, Chunyan Liu: analyzed the data. Qiangsheng Wu, Bo Shu: critically reviewed the manuscript.

Corresponding author

Correspondence to Bo Shu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Cecile Segonzac.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Phylogenetic tree of CsMRLK proteins and four other SYMRK proteins (TIFF 1106 kb)

Supplementary Fig. S2

Analysis and distribution of conserved motifs in CsMRLK proteins. (TIFF 2842 kb)

Supplementary Table S1

Primer sequences used for qRT-PCR analysis. (DOCX 14 kb)

Supplementary Table S2

Fragments per kilobase of exon model per million mapped reads (FPKM) values of each treatment. (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Sun, Q., Zhang, F. et al. Genome-wide identification and expression analysis of the Citrus malectin domain-containing receptor-like kinases in response to arbuscular mycorrhizal fungi colonization and drought. Hortic. Environ. Biotechnol. 61, 891–901 (2020). https://doi.org/10.1007/s13580-020-00273-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-020-00273-3

Keywords

Navigation