Skip to main content

Advertisement

Log in

Recent Progress in Impacts of Mixing State on Optical Properties of Black Carbon Aerosol

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Black carbon (BC) exerts profound impacts on air quality and climate because of its high-absorption cross section over a broad band of solar spectrum. Non-BC materials coated on BC could alter the mixing state of BC particles and can considerably enhance its mass absorption coefficient. Quantification of this absorption enhancement remains a challenge due to incomplete understanding of the complex physical and chemical properties related to mixing states. In this paper, we summarize the recent progress in measurement and modeling studies on the BC mixing state and their effects on optical properties. Laboratory and field-based observations have shown that the transformation of a mixing state from a highly fractal nature to a more compact shape exhibits a decrease in electric mobility diameter but an increase in fractal dimension and effective density. Meanwhile, the transition behavior is also obviously influenced by emission source which can determine the components of BC mixtures. Based on the empirically determined parameters, accurate numerical modeling shows great capability on calculating BC optical properties. However, considering the significant uncertainties related to BC microphysical properties, proper parameterization considering realistic BC aggregates and coating fraction can help to understand the progress from an externally to internally mixed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bond TC, Bergstrom RW. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol. 2006;40(1):27–67. https://doi.org/10.1080/02786820500421521.

    Article  CAS  Google Scholar 

  2. Zhang R, Khalizov AF, Pagels J, Zhang D, Xue H, McMurry PH. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc Natl Acad Sci. 2008;105(30):10291–6. https://doi.org/10.1073/pnas.0804860105.

    Article  Google Scholar 

  3. Schwarz JP, Spackman JR, Gao RS, Watts LA, Stier P, Schulz M, et al. Global-scale black carbon profiles observed in the remote atmosphere and compared to models. Geophys Res Lett. 2010;37(18). https://doi.org/10.1029/2010gl044372.

  4. Han C, Liu Y, Ma J, He H. Effect of soot microstructure on its ozonization reactivity. J Chem Phys. 2012;137:084507. https://doi.org/10.1063/1.4747190.

    Article  CAS  Google Scholar 

  5. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, et al. Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res-Atmos. 2013;118(11):5380–552. https://doi.org/10.1002/jgrd.50171.

    Article  CAS  Google Scholar 

  6. Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: the software package OPAC. Bull Am Meteorol Soc. 1998;79:831–44. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    Article  Google Scholar 

  7. Ogren JA, Charlson RJ. Elemental carbon in the atmosphere: cycle and lifetime. Tellus Ser B Chem Phys Meteorol. 1983;35(4):241–54. https://doi.org/10.3402/tellusb.v35i4.14612.

    Article  Google Scholar 

  8. Stier P, Seinfeld JH, Kinne S, Boucher O. Aerosol absorption and radiative forcing. Atmos Chem Phys. 2007;7(19):5237–61. https://doi.org/10.5194/acp-7-5237-2007.

    Article  CAS  Google Scholar 

  9. Jacobson MZ. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature. 2001;409(6821):695–7. https://doi.org/10.1038/35055518.

    Article  CAS  Google Scholar 

  10. Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nat Geosci. 2008;1(4):221–7. https://doi.org/10.1038/ngeo156.

    Article  CAS  Google Scholar 

  11. Li J, Pósfai M, Hobbs PV, Buseck PR. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. J Geophys Res-Atmos. 2003;108(D13). https://doi.org/10.1029/2002jd002310.

  12. Mallet M, Roger JC, Despiau S, Putaud JP, Dubovik O. A study of the mixing state of black carbon in urban zone. J Geophys Res-Atmos. 2004;109(D4). https://doi.org/10.1029/2003jd003940.

  13. China S, Mazzoleni C, Gorkowski K, Aiken AC, Dubey MK. Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles. Nat Commun. 2013;4(1):2122. https://doi.org/10.1038/ncomms3122.

    Article  CAS  Google Scholar 

  14. Schnaiter M, Linke C, Möhler O, Naumann K-H, Saathoff H, Wagner R, et al. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J Geophys Res-Atmos. 2005;110(D19). https://doi.org/10.1029/2005jd006046.

  15. Cappa CD, Onasch TB, Massoli P, Worsnop DR, Bates TS, Cross ES, et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science. 2012;337(6098):1078–81. https://doi.org/10.1126/science.1223447.

    Article  CAS  Google Scholar 

  16. McMeeking GR, Fortner E, Onasch TB, Taylor JW, Flynn M, Coe H, et al. Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning. J Geophys Res-Atmos. 2014;119(21):12,272–12,86. https://doi.org/10.1002/2014jd021750.

    Article  Google Scholar 

  17. Liu D, Whitehead J, Alfarra MR, Reyes-Villegas E, Spracklen Dominick V, Reddington Carly L, et al. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat Geosci. 2017;10(3):184–8. https://doi.org/10.1038/ngeo2901.

    Article  CAS  Google Scholar 

  18. Liu L, Mishchenko M. Scattering and radiative properties of morphologically complex carbonaceous aerosols: a systematic modeling study. Remote Sens. 2018;10:1634. https://doi.org/10.3390/rs10101634.

    Article  Google Scholar 

  19. Zeng C, Liu C, Li J, Zhu B, Yin Y, Wang Y. Optical properties and radiative forcing of aged BC due to hygroscopic growth: effects of the aggregate structure. J Geophys Res-Atmos. 2019;124(8):4620–33. https://doi.org/10.1029/2018jd029809.

    Article  Google Scholar 

  20. Jacobson MZ. A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophys Res Lett. 2000;27(2):217–20. https://doi.org/10.1029/1999gl010968.

    Article  Google Scholar 

  21. Hansen J, Sato M, Ruedy R, Lacis A, Oinas V. Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci. 2000;97(18):9875–80. https://doi.org/10.1073/pnas.170278997.

    Article  CAS  Google Scholar 

  22. Mikhailov EF, Vlasenko SS, Podgorny IA, Ramanathan V, Corrigan CE. Optical properties of soot–water drop agglomerates: an experimental study. J Geophys Res-Atmos. 2006;111(D7). https://doi.org/10.1029/2005jd006389.

  23. Moffet RC, Prather KA. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc Natl Acad Sci. 2009;106(29):11872–7. https://doi.org/10.1073/pnas.0900040106.

    Article  Google Scholar 

  24. Peng J, Hu M, Guo S, Du Z, Zheng J, Shang D, et al. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci. 2016;113(16):4266–71. https://doi.org/10.1073/pnas.1602310113.

    Article  CAS  Google Scholar 

  25. Rosen H, Hansen ADA, Gundel L, Novakov T. Identification of the optically absorbing component in urban aerosols. Appl Opt. 1978;17:3859–61. https://doi.org/10.1364/AO.17.003859.

    Article  CAS  Google Scholar 

  26. Dippel B, Jander H, Heintzenberg J. NIR FT Raman spectroscopic study of flame soot. Phys Chem Chem Phys (Incorporating Faraday Transactions). 1999;1:4707–12. https://doi.org/10.1039/A904529E.

    Article  CAS  Google Scholar 

  27. Schwarz JP, Gao RS, Fahey DW, Thomson DS, Watts LA, Wilson JC et al. Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. Journal of Geophysical Research: Atmospheres. 2006;111(D16). https://doi.org/10.1029/2006jd007076.

  28. Schwarz JP, Spackman JR, Fahey DW, Gao RS, Lohmann U, Stier P, et al. Coatings and their enhancement of black carbon light absorption in the tropical atmosphere. J Geophys Res-Atmos. 2008;113(D3). https://doi.org/10.1029/2007jd009042.

  29. Onasch TB, Trimborn A, Fortner EC, Jayne JT, Kok GL, Williams LR, et al. Soot particle aerosol mass spectrometer: development, validation, and initial application. Aerosol Sci Technol. 2012;46(7):804–17. https://doi.org/10.1080/02786826.2012.663948.

    Article  CAS  Google Scholar 

  30. Moosmüller H, Chakrabarty RK, Arnott WP. Aerosol light absorption and its measurement: a review. J Quant Spectrosc Radiat Transf. 2009;110(11):844–78. https://doi.org/10.1016/j.jqsrt.2009.02.035.

    Article  CAS  Google Scholar 

  31. Lack DA, Lovejoy ER, Baynard T, Pettersson A, Ravishankara AR. Aerosol absorption measurement using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments. Aerosol Sci Technol. 2006;40(9):697–708. https://doi.org/10.1080/02786820600803917.

    Article  CAS  Google Scholar 

  32. Sorensen CM. Light scattering by fractal aggregates: a review. Aerosol Sci Technol. 2001;35(2):648–87. https://doi.org/10.1080/02786820117868.

    Article  CAS  Google Scholar 

  33. China S, Salvadori N, Mazzoleni C. Effect of traffic and driving characteristics on morphology of atmospheric soot particles at freeway on-ramps. Environ Sci Technol. 2014;48(6):3128–35. https://doi.org/10.1021/es405178n.

    Article  CAS  Google Scholar 

  34. Wang Y, Liu F, He C, Bi L, Cheng T, Wang Z, et al. Fractal dimensions and mixing structures of soot particles during atmospheric processing. Environ Sci Technol Lett. 2017;4(11):487–93. https://doi.org/10.1021/acs.estlett.7b00418.

    Article  CAS  Google Scholar 

  35. Yuan Q, Xu J, Wang Y, Zhang X, Pang Y, Liu L, et al. Mixing state and fractal dimension of soot particles at a remote site in the southeastern Tibetan Plateau. Environ Sci Technol. 2019;53(14):8227–34. https://doi.org/10.1021/acs.est.9b01917.

    Article  CAS  Google Scholar 

  36. Lee KO, Cole R, Sekar R, Choi MY, Kang JS, Bae CS, et al. Morphological investigation of the microstructure, dimensions, and fractal geometry of diesel particulates. Proc Combust Inst. 2002;29(1):647–53. https://doi.org/10.1016/S1540-7489(02)80083-9.

    Article  CAS  Google Scholar 

  37. Zhu J, Lee KO, Yozgatligil A, Choi MY. Effects of engine operating conditions on morphology, microstructure, and fractal geometry of light-duty diesel engine particulates. Proc Combust Inst. 2005;30(2):2781–9. https://doi.org/10.1016/j.proci.2004.08.232.

    Article  CAS  Google Scholar 

  38. Chakrabarty RK, Moosmüller H, Garro MA, Arnott WP, Walker J, Susott RA, et al. Emissions from the laboratory combustion of wildland fuels: particle morphology and size. J Geophys Res-Atmos. 2006;111(D7). https://doi.org/10.1029/2005jd006659.

  39. Chandler MF, Teng Y, Koylu UO. Diesel engine particulate emissions: a comparison of mobility and microscopy size measurements. Proc Combust Inst. 2007;31(2):2971–9. https://doi.org/10.1016/j.proci.2006.07.200.

    Article  CAS  Google Scholar 

  40. Soewono A, Rogak S. Morphology and Raman spectra of engine-emitted particulates. Aerosol Sci Technol. 2011;45(10):1206–16. https://doi.org/10.1080/02786826.2011.587036.

    Article  CAS  Google Scholar 

  41. Seong HJ, Boehman AL. Evaluation of Raman parameters using visible Raman microscopy for soot oxidative reactivity. Energy Fuel. 2013;27(3):1613–24. https://doi.org/10.1021/ef301520y.

    Article  CAS  Google Scholar 

  42. Adachi K, Chung SH, Friedrich H, Buseck PR. Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties. J Geophys Res-Atmos. 2007;112(D14). https://doi.org/10.1029/2006jd008296.

  43. Adachi K, Chung SH, Buseck PR. Shapes of soot aerosol particles and implications for their effects on climate. J Geophys Res-Atmos. 2010;115(D15). https://doi.org/10.1029/2009jd012868.

  44. Odhiambo M, Routh J. Does black carbon contribute to eutrophication in large lakes? Curr Pollut Rep. 2016;2(4):236–8. https://doi.org/10.1007/s40726-016-0042-4.

    Article  CAS  Google Scholar 

  45. Pagels J, Khalizov AF, McMurry PH, Zhang RY. Processing of soot by controlled sulphuric acid and water condensation—mass and mobility relationship. Aerosol Sci Technol. 2009;43(7):629–40. https://doi.org/10.1080/02786820902810685.

    Article  CAS  Google Scholar 

  46. Xue H, Khalizov AF, Wang L, Zheng J, Zhang R. Effects of coating of dicarboxylic acids on the mass−mobility relationship of soot particles. Environ Sci Technol. 2009;43(8):2787–92. https://doi.org/10.1021/es803287v.

    Article  CAS  Google Scholar 

  47. Park K, Cao F, Kittelson DB, McMurry PH. Relationship between particle mass and mobility for diesel exhaust particles. Environ Sci Technol. 2003;37(3):577–83. https://doi.org/10.1021/es025960v.

    Article  CAS  Google Scholar 

  48. Khalizov AF, Lin Y, Qiu C, Guo S, Collins D, Zhang R. Role of OH-initiated oxidation of isoprene in aging of combustion soot. Environ Sci Technol. 2013;47(5):2254–63. https://doi.org/10.1021/es3045339.

    Article  CAS  Google Scholar 

  49. Rissler J, Messing ME, Malik AI, Nilsson PT, Nordin EZ, Bohgard M, et al. Effective density characterization of soot agglomerates from various sources and comparison to aggregation theory. Aerosol Sci Technol. 2013;47(7):792–805. https://doi.org/10.1080/02786826.2013.791381.

    Article  CAS  Google Scholar 

  50. Sorensen CM. The mobility of fractal aggregates: a review. Aerosol Sci Technol. 2011;45(7):765–79. https://doi.org/10.1080/02786826.2011.560909.

    Article  CAS  Google Scholar 

  51. Willeke K, Baron P. Aerosol measurement: principles, techniques, and applications. Van Nostrand Reinhold. 2001. https://doi.org/10.1002/9781118001684.

  52. DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Technol. 2004;38(12):1185–205. https://doi.org/10.1080/027868290903907.

    Article  CAS  Google Scholar 

  53. Han C, Li S-M, Liu P, Lee P. Size dependence of the physical characteristics of particles containing refractory black carbon in diesel vehicle exhaust. Environ Sci Technol. 2019;53(1):137–45. https://doi.org/10.1021/acs.est.8b04603.

    Article  CAS  Google Scholar 

  54. Qiu C, Khalizov AF, Zhang R. Soot aging from OH-initiated oxidation of toluene. Environ Sci Technol. 2012;46(17):9464–72. https://doi.org/10.1021/es301883y.

    Article  CAS  Google Scholar 

  55. Liu D, Allan JD, Young DE, Coe H, Beddows D, Fleming ZL, et al. Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. Atmos Chem Phys. 2014;14(18):10061–84. https://doi.org/10.5194/acp-14-10061-2014.

    Article  CAS  Google Scholar 

  56. Geller M, Biswas S, Sioutas C. Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer. Aerosol Sci Technol. 2006;40(9):709–23. https://doi.org/10.1080/02786820600803925.

    Article  CAS  Google Scholar 

  57. Barone TL, Lall AA, Storey JME, Mulholland GW, Prikhodko VY, Frankland JH, et al. Size-resolved density measurements of particle emissions from an advanced combustion diesel engine: effect of aggregate morphology. Energy Fuel. 2011;25(5):1978–88. https://doi.org/10.1021/ef200084k.

    Article  CAS  Google Scholar 

  58. Leskinen J, Ihalainen M, Torvela T, Kortelainen M, Lamberg H, Tiitta P, et al. Effective density and morphology of particles emitted from small-scale combustion of various wood fuels. Environ Sci Technol. 2014;48(22):13298–306. https://doi.org/10.1021/es502214a.

    Article  CAS  Google Scholar 

  59. Qiu C, Khalizov AF, Hogan B, Petersen EL, Zhang R. High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube. Environ Sci Technol. 2014;48(11):6444–52. https://doi.org/10.1021/es405589d.

    Article  CAS  Google Scholar 

  60. Rissler J, Nordin EZ, Eriksson AC, Nilsson PT, Frosch M, Sporre MK, et al. Effective density and mixing state of aerosol particles in a near-traffic urban environment. Environ Sci Technol. 2014;48(11):6300–8. https://doi.org/10.1021/es5000353.

    Article  CAS  Google Scholar 

  61. Tavakoli F, Olfert JS. Determination of particle mass, effective density, mass-mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem. J Aerosol Sci. 2014;75:35–42. https://doi.org/10.1016/j.jaerosci.2014.04.010.

    Article  CAS  Google Scholar 

  62. Liu H, Pan X, Wu Y, Wang D, Tian Y, Liu X, et al. Effective densities of soot particles and their relationships with the mixing state at an urban site in the Beijing megacity in the winter of 2018. Atmos Chem Phys. 2019;19(23):14791–804. https://doi.org/10.5194/acp-19-14791-2019.

    Article  CAS  Google Scholar 

  63. Ma Y, Huang C, Jabbour H, Zheng Z, Wang Y, Jiang Y, et al. Mixing state and light absorption enhancement of black carbon aerosols in summertime Nanjing, China. Atmos Environ. 2020;222:117141. https://doi.org/10.1016/j.atmosenv.2019.117141.

    Article  CAS  Google Scholar 

  64. Zhang F, Li J. Doubling–adding method for delta-four-stream spherical harmonic expansion approximation in radiative transfer parameterization. J Atmos Sci. 2013;70(10):3084–101. https://doi.org/10.1175/jas-d-12-0334.1.

    Article  Google Scholar 

  65. Clarke AD, Shinozuka Y, Kapustin VN, Howell S, Huebert B, Doherty S, et al. Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: physiochemistry and optical properties. J Geophys Res-Atmos. 2004;109(D15). https://doi.org/10.1029/2003jd004378.

  66. Zangmeister CD, You R, Lunny EM, Jacobson AE, Okumura M, Zachariah MR, et al. Measured in-situ mass absorption spectra for nine forms of highly-absorbing carbonaceous aerosol. Carbon. 2018;136:85–93. https://doi.org/10.1016/j.carbon.2018.04.057.

    Article  CAS  Google Scholar 

  67. Carrico CM, Bergin MH, Xu J, Baumann K, Maring H. Urban aerosol radiative properties: measurements during the 1999 Atlanta Supersite Experiment. J Geophys Res-Atmos. 2003;108(D7). https://doi.org/10.1029/2001jd001222.

  68. Flowers BA, Dubey MK, Mazzoleni C, Stone EA, Schauer JJ, Kim SW, et al. Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser photoacoustic spectrometer, particle sizing, and filter analysis. Atmos Chem Phys. 2010;10(21):10387–98. https://doi.org/10.5194/acp-10-10387-2010.

    Article  CAS  Google Scholar 

  69. Chan TW, Brook JR, Smallwood GJ, Lu G. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada. Atmos Chem Phys. 2011;11(20):10407–32. https://doi.org/10.5194/acp-11-10407-2011.

    Article  CAS  Google Scholar 

  70. Ångström A. On the atmospheric transmission of sun radiation and on dust in the air. Geogr Ann. 1929;11(2):156–66. https://doi.org/10.1080/20014422.1929.11880498.

    Article  Google Scholar 

  71. Bond TC. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys Res Lett. 2001;28(21):4075–8. https://doi.org/10.1029/2001gl013652.

    Article  Google Scholar 

  72. Lewis K, Arnott WP, Moosmüller H, Wold CE. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J Geophys Res-Atmos. 2008;113(D16). https://doi.org/10.1029/2007jd009699.

  73. Moosmüller H, Chakrabarty RK. Technical note: simple analytical relationships between Ångström coefficients of aerosol extinction, scattering, absorption, and single scattering albedo. Atmos Chem Phys. 2011;11:10677–80. https://doi.org/10.5194/acp-11-10677-2011.

    Article  CAS  Google Scholar 

  74. Liu C, Chung CE, Yin Y, Schnaiter M. The absorption Ångström exponent of black carbon: from numerical aspects. Atmos Chem Phys. 2018;18(9):6259–73. https://doi.org/10.5194/acp-18-6259-2018.

    Article  CAS  Google Scholar 

  75. Moosmüller H, Arnott WP. Particle optics in the Rayleigh regime. J Air Waste Manage Assoc. 2009;59(9):1028–31. https://doi.org/10.3155/1047-3289.59.9.1028.

    Article  CAS  Google Scholar 

  76. Kirchstetter TW, Novakov T, Hobbs PV. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res-Atmos. 2004;109(D21). https://doi.org/10.1029/2004jd004999.

  77. Russell PB, Bergstrom RW, Shinozuka Y, Clarke AD, DeCarlo PF, Jimenez JL, et al. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys. 2010;10(3):1155–69. https://doi.org/10.5194/acp-10-1155-2010.

    Article  CAS  Google Scholar 

  78. Giles DM, Holben BN, Eck TF, Sinyuk A, Smirnov A, Slutsker I, et al. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J Geophys Res-Atmos. 2012;117(D17). https://doi.org/10.1029/2012jd018127.

  79. Kirchstetter TW, Thatcher TL. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation. Atmos Chem Phys. 2012;12(14):6067–72. https://doi.org/10.5194/acp-12-6067-2012.

    Article  CAS  Google Scholar 

  80. Lu Z, Streets DG, Winijkul E, Yan F, Chen Y, Bond TC, et al. Light absorption properties and radiative effects of primary organic aerosol emissions. Environ Sci Technol. 2015;49(8):4868–77. https://doi.org/10.1021/acs.est.5b00211.

    Article  CAS  Google Scholar 

  81. Ganguly D, Jayaraman A, Gadhavi H, Rajesh TA. Features in wavelength dependence of aerosol absorption observed over central India. Geophys Res Lett. 2005;32(13). https://doi.org/10.1029/2005gl023023.

  82. Schnaiter M, Horvath H, Möhler O, Naumann KH, Saathoff H, Schöck OW. UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J Aerosol Sci. 2003;34(10):1421–44. https://doi.org/10.1016/S0021-8502(03)00361-6.

    Article  CAS  Google Scholar 

  83. Lack DA, Cappa CD. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos Chem Phys. 2010;10(9):4207–20. https://doi.org/10.5194/acp-10-4207-2010.

    Article  CAS  Google Scholar 

  84. Day DE, Hand JL, Carrico CM, Engling G, Malm WC. Humidification factors from laboratory studies of fresh smoke from biomass fuels. J Geophys Res-Atmos. 2006;111(D22). https://doi.org/10.1029/2006jd007221.

  85. Haywood JM, Shine KP. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys Res Lett. 1995;22(5):603–6. https://doi.org/10.1029/95gl00075.

    Article  CAS  Google Scholar 

  86. Khalizov AF, Xue H, Wang L, Zheng J, Zhang R. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. J Phys Chem A. 2009;113(6):1066–74. https://doi.org/10.1021/jp807531n.

    Article  CAS  Google Scholar 

  87. Cross ES, Onasch TB, Ahern A, Wrobel W, Slowik JG, Olfert J, et al. Soot particle studies—instrument inter-comparison—project overview. Aerosol Sci Technol. 2010;44(8):592–611. https://doi.org/10.1080/02786826.2010.482113.

    Article  CAS  Google Scholar 

  88. Khalizov AF, Hogan B, Qiu C, Petersen EL, Zhang R. Characterization of soot aerosol produced from combustion of propane in a shock tube. Aerosol Sci Technol. 2012;46(8):925–36. https://doi.org/10.1080/02786826.2012.683839.

    Article  CAS  Google Scholar 

  89. Bahadur R, Feng Y, Russell LM, Ramanathan V. Impact of California’s air pollution laws on black carbon and their implications for direct radiative forcing. Atmos Environ. 2011;45(5):1162–7. https://doi.org/10.1016/j.atmosenv.2010.10.054.

    Article  CAS  Google Scholar 

  90. Ackerman TP, Toon OB. Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl Opt. 1981;20(20):3661–8. https://doi.org/10.1364/AO.20.003661.

    Article  CAS  Google Scholar 

  91. You R, Radney JG, Zachariah MR, Zangmeister CD. Measured wavelength-dependent absorption enhancement of internally mixed black carbon with absorbing and nonabsorbing materials. Environ Sci Technol. 2016;50(15):7982–90. https://doi.org/10.1021/acs.est.6b01473.

    Article  CAS  Google Scholar 

  92. Liu S, Aiken AC, Gorkowski K, Dubey MK, Cappa CD, Williams LR, et al. Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat Commun. 2015;6(1):8435. https://doi.org/10.1038/ncomms9435.

    Article  CAS  Google Scholar 

  93. Xie C, Xu W, Wang J, Liu D, Ge X, Zhang Q, et al. Light absorption enhancement of black carbon in urban Beijing in summer. Atmos Environ. 2019;213:499–504. https://doi.org/10.1016/j.atmosenv.2019.06.041.

    Article  CAS  Google Scholar 

  94. Wang J, Zhang Q, Chen M, Collier S, Zhou S, Ge X, et al. First chemical characterization of refractory black carbon aerosols and associated coatings over the Tibetan Plateau (4730 m a.s.l). Environ Sci Technol. 2017;51(24):14072–82. https://doi.org/10.1021/acs.est.7b03973.

    Article  CAS  Google Scholar 

  95. Shiraiwa M, Kondo Y, Iwamoto T, Kita K. Amplification of light absorption of black carbon by organic coating. Aerosol Sci Technol. 2010;44(1):46–54. https://doi.org/10.1080/02786820903357686.

    Article  CAS  Google Scholar 

  96. Saliba G, Subramanian R, Saleh R, Ahern AT, Lipsky EM, Tasoglou A, et al. Optical properties of black carbon in cookstove emissions coated with secondary organic aerosols: measurements and modeling. Aerosol Sci Technol. 2016;50(11):1264–76. https://doi.org/10.1080/02786826.2016.1225947.

    Article  CAS  Google Scholar 

  97. Knox A, Evans GJ, Brook JR, Yao X, Jeong CH, Godri KJ, et al. Mass absorption cross-section of ambient black carbon aerosol in relation to chemical age. Aerosol Sci Technol. 2009;43(6):522–32. https://doi.org/10.1080/02786820902777207.

    Article  CAS  Google Scholar 

  98. Lack DA, Langridge JM, Bahreini R, Cappa CD, Middlebrook AM, Schwarz JP. Brown carbon and internal mixing in biomass burning particles. Proc Natl Acad Sci. 2012;109(37):14802–7. https://doi.org/10.1073/pnas.1206575109.

    Article  Google Scholar 

  99. Wang Q, Huang RJ, Cao J, Han Y, Wang G, Li G, et al. Mixing state of black carbon aerosol in a heavily polluted urban area of China: implications for light absorption enhancement. Aerosol Sci Technol. 2014;48(7):689–97. https://doi.org/10.1080/02786826.2014.917758.

    Article  CAS  Google Scholar 

  100. Cui X, Wang X, Yang L, Chen B, Chen J, Andersson A, et al. Radiative absorption enhancement from coatings on black carbon aerosols. Sci Total Environ. 2016;551–552:51–6. https://doi.org/10.1016/j.scitotenv.2016.02.026.

    Article  CAS  Google Scholar 

  101. Barnard JC, Volkamer R, Kassianov EI. Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area. Atmos Chem Phys. 2008;8(22):6665–79. https://doi.org/10.5194/acp-8-6665-2008.

    Article  CAS  Google Scholar 

  102. Clarke A, McNaughton C, Kapustin V, Shinozuka Y, Howell S, Dibb J, et al. Biomass burning and pollution aerosol over North America: organic components and their influence on spectral optical properties and humidification response. J Geophys Res-Atmos. 2007;112(D12). https://doi.org/10.1029/2006jd007777.

  103. Alexander DTL, Crozier PA, Anderson JR. Brown carbon spheres in East Asian outflow and their optical properties. Science. 2008;321(5890):833–6. https://doi.org/10.1126/science.1155296.

    Article  CAS  Google Scholar 

  104. Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engström E, et al. Brown clouds over South Asia: biomass or fossil fuel combustion? Science. 2009;323(5913):495–8. https://doi.org/10.1126/science.1164857.

    Article  CAS  Google Scholar 

  105. Riemer N, Ault AP, West M, Craig RL, Curtis JH. Aerosol mixing state: measurements, modeling, and impacts. Rev Geophys. 2019;57:187–249. https://doi.org/10.1029/2018rg000615.

    Article  Google Scholar 

  106. Riemer N, West M, Zaveri RA, Easter RC. Simulating the evolution of soot mixing state with a particle-resolved aerosol model. J Geophys Res-Atmos. 2009;114(D9). https://doi.org/10.1029/2008jd011073.

  107. Smoluchowski M. Drei Vorträge über Diffusion, Brown’sche molekular Beweging und Koagulation von Kolloidteilchen. Physik Z. 1916a;17:557–85.

    Google Scholar 

  108. Smoluchowski M. Versuch Einer Mathematischen Theorie der Koagulations Kinetis Kolloider Losungen. Z Phys Chem. 1916b;92:129–68. https://doi.org/10.1515/zpch-1918-9209.

    Article  Google Scholar 

  109. Riemer N, Ault AP, West M, Craig RL, Curtis JH. Aerosol mixing state: measurements, modeling, and impacts. Rev Geophys. 2019;57(2):187–249. https://doi.org/10.1029/2018rg000615.

    Article  Google Scholar 

  110. Koch D. Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J Geophys Res-Atmos. 2001;106(D17):20311–32. https://doi.org/10.1029/2001jd900038.

    Article  CAS  Google Scholar 

  111. Solmon F, Giorgi F, Liousse C. Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus Ser B Chem Phys Meteorol. 2006;58(1):51–72. https://doi.org/10.1111/j.1600-0889.2005.00155.x.

    Article  CAS  Google Scholar 

  112. Lauer A, Hendricks J, Ackermann I, Schell B, Hass H, Metzger S. Simulating aerosol microphysics with the ECHAM/MADE GCM &ndash; part I: model description and comparison with observations. Atmos Chem Phys. 2005;5(12):3251–76. https://doi.org/10.5194/acp-5-3251-2005.

    Article  CAS  Google Scholar 

  113. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, et al. Fully coupled “online” chemistry within the WRF model. Atmos Environ. 2005;39(37):6957–75. https://doi.org/10.1016/j.atmosenv.2005.04.027.

    Article  CAS  Google Scholar 

  114. Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, et al. The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys. 2005;5(4):1125–56. https://doi.org/10.5194/acp-5-1125-2005.

    Article  CAS  Google Scholar 

  115. Bauer SE, Wright DL, Koch D, Lewis ER, McGraw R, Chang LS, et al. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models. Atmos Chem Phys. 2008;8(20):6003–35. https://doi.org/10.5194/acp-8-6003-2008.

    Article  CAS  Google Scholar 

  116. Vogel B, Vogel H, Bäumer D, Bangert M, Lundgren K, Rinke R, et al. The comprehensive model system COSMO-ART – Radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos Chem Phys. 2009;9(22):8661–80. https://doi.org/10.5194/acp-9-8661-2009.

    Article  CAS  Google Scholar 

  117. Liu X, Easter RC, Ghan SJ, Zaveri R, Rasch P, Shi X, et al. Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geosci Model Dev. 2012;5(3):709–39. https://doi.org/10.5194/gmd-5-709-2012.

    Article  Google Scholar 

  118. Binkowski FS, Roselle SJ. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J Geophys Res-Atmos. 2003;108(D6). https://doi.org/10.1029/2001jd001409.

  119. Wilson J, Cuvelier C, Raes F. A modeling study of global mixed aerosol fields. J Geophys Res-Atmos. 2001;106(D24):34081–108. https://doi.org/10.1029/2000jd000198.

    Article  CAS  Google Scholar 

  120. Jacobson MZ. Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. J Geophys Res-Atmos. 2002;107(D19):AAC 2–1-AAC 2–23. https://doi.org/10.1029/2001jd002044.

    Article  Google Scholar 

  121. Matsui H, Koike M, Kondo Y, Moteki N, Fast JD, Zaveri RA. Development and validation of a black carbon mixing state resolved three-dimensional model: aging processes and radiative impact. J Geophys Res-Atmos. 2013;118(5):2304–26. https://doi.org/10.1029/2012jd018446.

    Article  CAS  Google Scholar 

  122. Zhu S, Sartelet KN, Seigneur C. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0). Geosci Model Dev. 2015;8(6):1595–612. https://doi.org/10.5194/gmd-8-1595-2015.

    Article  Google Scholar 

  123. Ching J, Zaveri RA, Easter RC, Riemer N, Fast JD. A three-dimensional sectional representation of aerosol mixing state for simulating optical properties and cloud condensation nuclei. J Geophys Res-Atmos. 2016;121(10):5912–29. https://doi.org/10.1002/2015jd024323.

    Article  Google Scholar 

  124. McGraw R. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Technol. 1997;27(2):255–65. https://doi.org/10.1080/02786829708965471.

    Article  CAS  Google Scholar 

  125. McGraw R, Wright DL. Chemically resolved aerosol dynamics for internal mixtures by the quadrature method of moments. J Aerosol Sci. 2003;34(2):189–209. https://doi.org/10.1016/S0021-8502(02)00157-X.

    Article  CAS  Google Scholar 

  126. McGraw R, Leng L, Zhu W, Riemer N, West M. Aerosol dynamics using the quadrature method of moments: comparing several quadrature schemes with particle-resolved simulation. J Phys Conf Ser. 2008;125:012020. https://doi.org/10.1088/1742-6596/125/1/012020.

    Article  CAS  Google Scholar 

  127. Zaveri RA, Easter RC, Fast JD, Peters LK. Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J Geophys Res-Atmos. 2008;113(D13). https://doi.org/10.1029/2007jd008782.

  128. Liu L, Mishchenko MI. Effects of aggregation on scattering and radiative properties of soot aerosols. J Geophys Res-Atmos. 2005;110(D11). https://doi.org/10.1029/2004jd005649.

  129. Mackowski DW, Mishchenko MI. A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J Quant Spectrosc Radiat Transf. 2011;112(13):2182–92. https://doi.org/10.1016/j.jqsrt.2011.02.019.

    Article  CAS  Google Scholar 

  130. Liu C. Optical properties of black carbon aggregates. In: Kokhanovsky A, editor. Springer Series in Light Scattering. 2019. p. 167–218.

  131. Liu C, Li J, Yin Y, Zhu B, Feng Q. Optical properties of black carbon aggregates with non-absorptive coating. J Quant Spectrosc Radiat Transf. 2017;187:443–52. https://doi.org/10.1016/j.jqsrt.2016.10.023.

    Article  CAS  Google Scholar 

  132. Wu Y, Cheng T, Liu D, Allan JD, Zheng L, Chen H. Light absorption enhancement of black carbon aerosol constrained by particle morphology. Environ Sci Technol. 2018;52(12):6912–9. https://doi.org/10.1021/acs.est.8b00636.

    Article  CAS  Google Scholar 

  133. He C. Radiative properties of atmospheric black carbon (soot) particles with complex structures. 2019. p. 219–54.

  134. Bauer SE, Menon S, Koch D, Bond TC, Tsigaridis K. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. Atmos Chem Phys. 2010;10(15):7439–56. https://doi.org/10.5194/acp-10-7439-2010.

    Article  CAS  Google Scholar 

  135. Ghan SJ, Liu X, Easter RC, Zaveri R, Rasch PJ, Yoon J-H, et al. Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J Clim. 2012;25:6461–76. https://doi.org/10.1175/jcli-d-11-00650.1.

    Article  Google Scholar 

  136. Nelson J. Test of a mean field theory for the optics of fractal clusters. J Mod Opt. 1989;36(8):1031–57. https://doi.org/10.1080/09500348914551081.

    Article  Google Scholar 

  137. Mishchenko MI, Liu L, Travis LD, Lacis AA. Scattering and radiative properties of semi-external versus external mixtures of different aerosol types. J Quant Spectrosc Radiat Transf. 2004;88(1):139–47. https://doi.org/10.1016/j.jqsrt.2003.12.032.

    Article  CAS  Google Scholar 

  138. Xu Y-l. Electromagnetic scattering by an aggregate of spheres: asymmetry parameter. Phys Lett A. 1998;249(1):30–6. https://doi.org/10.1016/S0375-9601(98)00708-7.

    Article  CAS  Google Scholar 

  139. Xu Y-l, Gustafson BÅS. A generalized multiparticle Mie-solution: further experimental verification. J Quant Spectrosc Radiat Transf. 2001;70(4):395–419. https://doi.org/10.1016/S0022-4073(01)00019-X.

    Article  CAS  Google Scholar 

  140. Xu Y-l, Khlebtsov NG. Orientation-averaged radiative properties of an arbitrary configuration of scatterers. J Quant Spectrosc Radiat Transf. 2003;79–80:1121–37. https://doi.org/10.1016/S0022-4073(02)00345-X.

    Article  CAS  Google Scholar 

  141. Yurkin MA, Hoekstra AG. The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transf. 2007;106(1):558–89. https://doi.org/10.1016/j.jqsrt.2007.01.034.

    Article  CAS  Google Scholar 

  142. Yurkin MA, Hoekstra AG. The discrete-dipole-approximation code ADDA: capabilities and known limitations. J Quant Spectrosc Radiat Transf. 2011;112(13):2234–47. https://doi.org/10.1016/j.jqsrt.2011.01.031.

    Article  CAS  Google Scholar 

  143. Brem BT, Mena Gonzalez FC, Meyers SR, Bond TC, Rood MJ. Laboratory-measured optical properties of inorganic and organic aerosols at relative humidities up to 95%. Aerosol Sci Technol. 2012;46(2):178–90. https://doi.org/10.1080/02786826.2011.617794.

    Article  CAS  Google Scholar 

  144. Bohren CF, Huffman DR. Absorption and scattering of light by small particles. New York: Wiley; 1983.

    Google Scholar 

  145. Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen. Ann Phys. 1937;421(2):160–78. https://doi.org/10.1002/andp.19374210205.

    Article  Google Scholar 

  146. Garnett JCM, Larmor J XII. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character. 1904;203(359–371):385–420. https://doi.org/10.1098/rsta.1904.0024.

  147. Liu C, Lee Panetta R, Yang P. Inhomogeneity structure and the applicability of effective medium approximations in calculating light scattering by inhomogeneous particles. J Quant Spectrosc Radiat Transf. 2014;146:331–48.

    Article  CAS  Google Scholar 

  148. Liu C, Teng S, Zhu Y, Yurkin MA, Yung YL. Performance of the discrete dipole approximation for optical properties of black carbon aggregates. J Quant Spectrosc Radiat Transf. 2018;221:98–109. https://doi.org/10.1016/j.jqsrt.2018.09.030.

    Article  CAS  Google Scholar 

  149. Doner N, Liu F, Yon J. Impact of necking and overlapping on radiative properties of coated soot aggregates. Aerosol Sci Technol. 2017;51(4):532–42. https://doi.org/10.1080/02786826.2016.1275513.

    Article  CAS  Google Scholar 

  150. Kahnert M. On the discrepancy between modeled and measured mass absorption cross sections of light absorbing carbon aerosols. Aerosol Sci Technol. 2010;44(6):453–60. https://doi.org/10.1080/02786821003733834.

    Article  CAS  Google Scholar 

  151. Kahnert M. Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model. Atmos Chem Phys. 2010;10(3):1403–16. https://doi.org/10.5194/acp-10-1403-2010.

    Article  CAS  Google Scholar 

  152. Kandilian R, Heng R-L, Pilon L. Absorption and scattering by fractal aggregates and by their equivalent coated spheres. J Quant Spectrosc Radiat Transf. 2015;151:310–26. https://doi.org/10.1016/j.jqsrt.2014.10.018.

    Article  CAS  Google Scholar 

  153. Litton CD, Perera IE. Modeling the optical properties of combustion-generated fractal aggregates. Fuel. 2014;130:215–20. https://doi.org/10.1016/j.fuel.2014.04.043.

    Article  CAS  Google Scholar 

  154. Liu F, Snelling D. Evaluation of the accuracy of the RDG approximation for the absorption and scattering properties of fractal aggregates of flame-generated soot. 40th AIAA Thermophysics Conference. 2008. https://doi.org/10.2514/6.2008-4362.

  155. Liu C, Xu X, Yin Y, Schnaiter M, Yung YL. Black carbon aggregates: a database for optical properties. J Quant Spectrosc Radiat Transf. 2019;222–223:170–9. https://doi.org/10.1016/j.jqsrt.2018.10.021.

    Article  CAS  Google Scholar 

  156. Luo J, Zhang Y, Wang F, Wang J, Zhang Q. Applying machine learning to estimate the optical properties of black carbon fractal aggregates. J Quant Spectrosc Radiat Transf. 2018;215:1–8. https://doi.org/10.1016/j.jqsrt.2018.05.002.

    Article  CAS  Google Scholar 

  157. Scarnato BV, Vahidinia S, Richard DT, Kirchstetter TW. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos Chem Phys. 2013;13(10):5089–101. https://doi.org/10.5194/acp-13-5089-2013.

    Article  CAS  Google Scholar 

  158. Soewono A, Rogak SN. Morphology and optical properties of numerically simulated soot aggregates. Aerosol Sci Technol. 2013;47(3):267–74. https://doi.org/10.1080/02786826.2012.749972.

    Article  CAS  Google Scholar 

  159. Wu Y, Cheng T, Zheng L, Chen H. A study of optical properties of soot aggregates composed of poly-disperse monomers using the superposition T-matrix method. Aerosol Sci Technol. 2015;49(10):941–9. https://doi.org/10.1080/02786826.2015.1083938.

    Article  CAS  Google Scholar 

  160. Filippov AV, Zurita M, Rosner DE. Fractal-like aggregates: relation between morphology and physical properties. J Colloid Interface Sci. 2000;229(1):261–73. https://doi.org/10.1006/jcis.2000.7027.

    Article  CAS  Google Scholar 

  161. Teng S, Liu C, Schnaiter M, Chakrabarty RK, Liu F. Accounting for the effects of nonideal minor structures on the optical properties of black carbon aerosols. Atmos Chem Phys. 2019;19(5):2917–31. https://doi.org/10.5194/acp-19-2917-2019.

    Article  CAS  Google Scholar 

  162. Jacobson MZ. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J Geophys Res-Atmos. 2010;115(D14). https://doi.org/10.1029/2009jd013795.

  163. D'Almeida GA, Koepke P, Shettle E. Atmospheric aerosols global climatology and radiative characteristics. A Deepak publishing. 1991.

  164. Wu Y, Gu X, Cheng T, Xie D, Yu T, Chen H, et al. The single scattering properties of the aerosol particles as aggregated spheres. J Quant Spectrosc Radiat Transf. 2012;113(12):1454–66. https://doi.org/10.1016/j.jqsrt.2012.03.015.

    Article  CAS  Google Scholar 

  165. Zhang H, Zhou C, Wang Z, Zhao S, Li J. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties. J Quant Spectrosc Radiat Transf. 2015;161:105–16. https://doi.org/10.1016/j.jqsrt.2015.04.002.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2018YFC0213800), the National Natural Science Foundation of China (41975162, 21777073, and 41675125), and an open fund by Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (KHK1908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Hu.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Air Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhu, Y., Hu, J. et al. Recent Progress in Impacts of Mixing State on Optical Properties of Black Carbon Aerosol. Curr Pollution Rep 6, 380–398 (2020). https://doi.org/10.1007/s40726-020-00158-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00158-0

Keywords

Navigation