Skip to main content

Advertisement

Log in

The role of mitochondrial dysfunction in mesenchymal stem cell senescence

  • Mini Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) hold enormous potential for the treatment of immune-related conditions and degenerative diseases, owing to their self-renewal and multilineage differentiation capabilities. Nevertheless, cellular senescence significantly impacts the quantity and quality of MSCs, limiting their clinical use. Mitochondria play essential roles in energy production by oxidative phosphorylation and metabolism of energy sources via the tricarboxylic acid cycle. Therefore, mitochondrial dysfunction is a primary cause of senescence in MSCs. Herein, we summarize the current knowledge regarding the mechanisms underlying mitochondrial dysfunction–associated cellular senescence. We also discuss potential methods to prevent or even reverse MSC senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alessio N, Riccitiello F, Squillaro T, Capasso S, Del Gaudio S, Di Bernardo G, Cipollaro M, Melone MAB, Peluso G, Galderisi U (2018) Neural stem cells from a mouse model of Rett syndrome are prone to senescence, show reduced capacity to cope with genotoxic stress, and are impaired in the differentiation process. Exp Mol Med 50:1–1

    PubMed  PubMed Central  Google Scholar 

  • Beaupere C, Garcia M, Larghero J, Fève B, Capeau J, Lagathu C (2015) The HIV proteins Tat and Nef promote human bone marrow mesenchymal stem cell senescence and alter osteoblastic differentiation. Aging Cell 14:534–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Böttinger L, Guiard B, Oeljeklaus S, Kulawiak B, Zufall N, Wiedemann N, Warscheid B, van der Laan M, Becker T (2013) A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase. Mol Biol Cell 24:2609–2619

    PubMed  PubMed Central  Google Scholar 

  • Brzezinski A (1997) Melatonin in humans. N Engl J Med 336:186–195

    CAS  PubMed  Google Scholar 

  • Capaldi RA (1990) Structure and function of cytochrome c oxidase. Annu Rev Biochem 59:569–596

    CAS  PubMed  Google Scholar 

  • Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593:1566–1579

    CAS  PubMed  Google Scholar 

  • Checler F, Goiran T, Alves da Costa C (2018) Nuclear TP53: an unraveled function as transcriptional repressor of PINK1. Autophagy 14:1099–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chichester L, Wylie AT, Craft S, Kavanagh K (2015) Muscle heat shock protein 70 predicts insulin resistance with aging. J Gerontol A Biol Sci Med Sci 70:155–162

    CAS  PubMed  Google Scholar 

  • Drew BG, Ribas V, Le JA, Henstridge DC, Phun J, Zhou Z, Soleymani T, Daraei P, Sitz D, Vergnes L, Wanagat J, Reue K, Febbraio MA, Hevener AL (2014) HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes 63:1488–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan P, Yu XY, Xie XH, Chen CH, Zhang P, Yang C, Peng X, Wang YT (2019) Mitophagy is a protective response against oxidative damage in bone marrow mesenchymal stem cells. Life Sci 229:36–45. https://doi.org/10.1016/j.lfs.2019.05.027

    Article  CAS  PubMed  Google Scholar 

  • Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    CAS  PubMed  Google Scholar 

  • Fujiwara M, Tian L, Le PT, DeMambro VE, Becker KA, Rosen CJ, Guntur AR (2019) The mitophagy receptor Bcl-2-like protein 13 stimulates adipogenesis by regulating mitochondrial oxidative phosphorylation and apoptosis in mice. J Biol Chem 294:12683–12694. https://doi.org/10.1074/jbc.RA119.008630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Muñoz-Cánoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42

    PubMed  Google Scholar 

  • Geissler S, Textor M, Kühnisch J, Könnig D, Klein O, Ode A, Pfitzner T, Adjaye J, Kasper G, Duda GN (2012) Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One 7:e52700–e52700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hüttemann M, Kadenbach B, Grossman LI (2001) Mammalian subunit IV isoforms of cytochrome c oxidase. Gene 267:111–123

    PubMed  Google Scholar 

  • Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, Hara H, Minagawa S, Wakui H, Fujii S, Kojima J, Shimizu K, Numata T, Kawaishi M, Odaka M, Morikawa T, Harada T, Nishimura SL, Kaneko Y, Nakayama K, Kuwano K (2015) PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 11:547–559

    PubMed  PubMed Central  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    CAS  PubMed  Google Scholar 

  • Kim J, Piao Y, Pak YK, Chung D, Han YM, Hong JS, Jun EJ, Shim J-Y, Choi J, Kim CJ (2015) Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev 24:575–586

    CAS  PubMed  Google Scholar 

  • Kornicka K, Szłapka-Kosarzewska J, Śmieszek A, Marycz K (2019) 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J Cell Mol Med 23:237–259

    CAS  PubMed  Google Scholar 

  • Korolchuk VI, Miwa S, Carroll B, von Zglinicki T (2017) Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine 21:7–13

    PubMed  PubMed Central  Google Scholar 

  • Kurpinski K, Jang D-J, Bhattacharya S, Rydberg B, Chu J, So J, Wyrobek A, Li S, Wang D (2009) Differential effects of x-rays and high-energy 56Fe ions on human mesenchymal stem cells. Int J Radiat Oncol Biol Phys 73:869–877

    CAS  PubMed  Google Scholar 

  • Lee JH, Yoon YM, Song K-H, Noh H, Lee SH (2020) Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell:e13111-e13111

  • Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J (2017) Senescence of mesenchymal stem cells (review). Int J Mol Med 39:775–782

    CAS  PubMed  Google Scholar 

  • Martellucci S, Santacroce C, Santilli F, Piccoli L, Delle Monache S, Angelucci A, Misasi R, Sorice M, Mattei V (2019) Cellular and molecular mechanisms mediated by recPrP(C) involved in the neuronal differentiation process of mesenchymal stem cells. Int J Mol Sci 20:345

    PubMed Central  Google Scholar 

  • Matsuda N, Tanaka K (2010) Uncovering the roles of PINK1 and Parkin in mitophagy. Autophagy 6:952–954

    PubMed  PubMed Central  Google Scholar 

  • Nelson G, Kucheryavenko O, Wordsworth J, von Zglinicki T (2018) The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech Ageing Dev 170:30–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ntege EH, Sunami H, Shimizu Y (2020) Advances in regenerative therapy: a review of the literature and future directions. Regen Ther 14:136–153

    PubMed  PubMed Central  Google Scholar 

  • Onodera Y, Teramura T, Takehara T, Obora K, Mori T, Fukuda K (2017) miR-155 induces ROS generation through downregulation of antioxidation-related genes in mesenchymal stem cells. Aging Cell 16:1369–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110–e110

    PubMed  PubMed Central  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  • Schofield JH, Schafer ZT (2020) Mitochondrial ROS and mitophagy: a complex and nuanced relationship. Antioxid Redox Signal. https://doi.org/10.1089/ars.2020.8058

  • Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47:921–928

    CAS  PubMed  Google Scholar 

  • Seok, J., Jung, H.S., Park, S., Lee, J.O., Kim, C.J., Kim, G.J. (2020) Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells. Stem Cell Res Ther 11, 1–1

  • Squillaro T, Alessio N, Capasso S, Di Bernardo G, Melone MAB, Peluso G, Galderisi U (2019) Senescence phenomena and metabolic alteration in mesenchymal stromal cells from a mouse model of Rett syndrome. Int J Mol Sci 20:2508

    CAS  PubMed Central  Google Scholar 

  • Stab BR, Martinez L, Grismaldo A, Lerma A, Gutiérrez ML, Barrera LA, Sutachan JJ, Albarracín SL (2016) Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs. Front Aging Neurosci 8:1–10. https://doi.org/10.3389/fnagi.2016.00299

    Article  CAS  Google Scholar 

  • Tsujimoto T, Mori T, Houri K, Onodera Y, Takehara T, Shigi K, Nakao S, Teramura T, Fukuda K (2020) miR-155 inhibits mitophagy through suppression of BAG5, a partner protein of PINK1. Biochem Biophys Res Commun 523:707–712

    CAS  PubMed  Google Scholar 

  • Turinetto V, Vitale E, Giachino C (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci 17:1164

    PubMed Central  Google Scholar 

  • Wang D, Jang D-J (2009) Protein kinase CK2 regulates cytoskeletal reorganization during ionizing radiation-induced senescence of human mesenchymal stem cells. Cancer Res 69:8200–8207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Han Z-B, Song Y-P, Han ZC (2012) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012:652034–652034

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang J, Tang Y, Shen H-M (2018) PTEN-L puts a brake on mitophagy. Autophagy 14:2023–2025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–314

    CAS  PubMed  Google Scholar 

  • Yang F, Yan G, Li Y, Han Z, Zhang L, Chen S, Feng C, Huang Q, Ding F, Yu Y, Bi C, Cai B, Yang L (2016) Astragalus polysaccharide attenuated iron overload-induced dysfunction of mesenchymal stem cells via suppressing mitochondrial ROS. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 39:1369–1379

    CAS  Google Scholar 

  • Yin F, Yan J, Zhao Y, Guo KJ, Zhang ZL, Li AP, Meng CY, Guo L (2019) Bone marrow mesenchymal stem cells repair Cr (VI)- injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway. Ecotoxicol Environ Saf 176:234–241. https://doi.org/10.1016/j.ecoenv.2019.03.093

    Article  CAS  PubMed  Google Scholar 

  • Yoon YM, Kim S, Han Y-S, Yun CW, Lee JH, Noh H, Lee SH (2019) TUDCA-treated chronic kidney disease-derived hMSCs improve therapeutic efficacy in ischemic disease via PrP(C). Redox Biol 22:101144–101144

    PubMed  PubMed Central  Google Scholar 

  • Yoon YM, Lee JH, Song K-H, Noh H, Lee SH (2020) Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J Pineal Res:e12632-e12632

  • Yu D, Du Z, Pian L, Li T, Wen X, Li W, Kim S-J, Xiao J, Cohen P, Cui J, Hoffman AR, Hu J-F (2017) Mitochondrial DNA hypomethylation is a biomarker associated with induced senescence in human fetal heart mesenchymal stem cells. Stem Cells Int 2017:1764549–1764549

    PubMed  PubMed Central  Google Scholar 

  • Zhang F, Peng W, Zhang J, Dong W, Wu J, Wang T, Xie Z (2020) P53 and Parkin co-regulate mitophagy in bone marrow mesenchymal stem cells to promote the repair of early steroid-induced osteonecrosis of the femoral head. Cell Death Dis 11:42–42

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 81874007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Pan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y., Chen, E. et al. The role of mitochondrial dysfunction in mesenchymal stem cell senescence. Cell Tissue Res 382, 457–462 (2020). https://doi.org/10.1007/s00441-020-03272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03272-z

Keywords

Navigation