Skip to main content
Log in

Modified Hybrid Projection Methods with SP Iterations for Quasi-Nonexpansive Multivalued Mappings in Hilbert Spaces

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this paper, we present a modified SP iteration with the inertial technical term for three quasi-nonexpansive multivalued mappings in a Hilbert space. We then obtain weak convergence theorem under suitable conditions. The strong convergence theorems are given using CQ and shrinking projection methods with our modified iteration. Finally, we test some numerical experiments to illustrate that our inertial forward–backward method with the inertial technique term has a more effective convergence than that of the standard forward–backward method and Halpern algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications, Topological Fixed Point Theory and Its Applications, 6. Springer, New York (2009)

    MATH  Google Scholar 

  2. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaces. SIAM. J. Optim. 14(3), 773–782 (2004)

    Article  MathSciNet  Google Scholar 

  3. Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Val. Anal. 9, 3–11 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Matou sková, E., Reich, S.: Projection and proximal point methods:convergence results and counterexamples. Nonlinear Anal 56(5), 715–738 (2004)

    Article  MathSciNet  Google Scholar 

  5. Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. USA 54, 1041–1044 (1965)

    Article  MathSciNet  Google Scholar 

  6. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projection in a product space. Numer. Algorithms 71, 915–932 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cholamjiak, P., Cholamjiak, W.: Fixed point theorems for hybrid multivalued mappings in Hilbert spaces. J. Fixed Point Theory Appl. 18(3), 673–688 (2016)

    Article  MathSciNet  Google Scholar 

  8. Cholamjiak, W., Cholamjiak, P., Suantai, S.: An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl. 20, 42 (2018)

    Article  MathSciNet  Google Scholar 

  9. Cholamjiak, W., Chutibutr, N., Weerakham, S.: Weak and strong convergence theorems for the modified Ishikawa iterative for two hybrid multivalued mappings in Hilbert spaces. Commun. Korean Math. Soc. 33(3), 767–786 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Cholamjiak, W., Pholasa, N., Suantai, S.: A modified inertial shrinking projection method for solving inclusion problems and quasi-nonexpansive multivalued mappings. Comp. Appl. Math. 1, 1 (2018). https://doi.org/10.1007/s40314-018-0661-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Dang, Y., Sun, J., Xu, H.: Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2016078

  12. Dong, Q. L., Yuan, H. B., Cho, Y. J., Rassias, Th. M.: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. https://doi.org/10.1007/s11590-016-1102-9

  13. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  14. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83. Marcel Dekker Inc, New York (1984)

    Google Scholar 

  15. Gohde, D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 30, 251–258 (1965)

    Article  MathSciNet  Google Scholar 

  16. Halpern, B.: Fixed points of nonexpansive maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  Google Scholar 

  17. Iemoto, S., Takahashi, W.: Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space. Nonlinear Anal. 71(12), 2082–2089 (2009)

    Article  MathSciNet  Google Scholar 

  18. Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147–150 (1974)

    Article  MathSciNet  Google Scholar 

  19. Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Monthly 72, 1004–1006 (1965)

    Article  MathSciNet  Google Scholar 

  20. Kohsaka, F., Takahashi, W.: Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Optim. 19(2), 824–835 (2008)

    Article  MathSciNet  Google Scholar 

  21. Kohsaka, F., Takahashi, W.: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. (Basel) 91(2), 166–177 (2008)

    Article  MathSciNet  Google Scholar 

  22. López, G., Martín-Márquez, V., Wang, F., Xu, H. K.: Forward–backward splitting methods for accretive operators in Banach spaces. Abstract and Applied Analysis, ID 109236, 25. https://doi.org/10.1155/2012/109236

  23. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  24. Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal. 64(11), 2400–2411 (2006)

    Article  MathSciNet  Google Scholar 

  25. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279(2), 372–379 (2003)

    Article  MathSciNet  Google Scholar 

  26. Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217–229 (2000)

    Article  MathSciNet  Google Scholar 

  27. Nesterov, Y.: A method for solving the convex programming problem with convergence rate \(O(1/k^{2})\). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)

    MathSciNet  Google Scholar 

  28. Phuengrattana, W., Suantai, S.: On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 235, 3006–3014 (2011)

    Article  MathSciNet  Google Scholar 

  29. Piri, H., Rahrovi, S., Kumam, P.: Generalization of Khan fixed point theorem. J. Math. Comput. Sci. 17, 76–83 (2017)

    Article  Google Scholar 

  30. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  31. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    MathSciNet  Google Scholar 

  32. Reich, S.: Research Problems: The fixed point property for non-expansive mappings. Am. Math. Monthly 83(4), 266–268 (1976)

    Article  MathSciNet  Google Scholar 

  33. Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62(1), 104–113 (1978)

    Article  MathSciNet  Google Scholar 

  34. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67(2), 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  35. Stos̆ić, M., Xavier, J., Dodig, M.: Projection on the intersection of convex sets, Linear Algebra Appl., 9, 191–205 (2016)

  36. Suantai, S.: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. J. Math. Anal. Appl. 311(2), 506–517 (2005)

    Article  MathSciNet  Google Scholar 

  37. Takahashi, W., Takeuchi, Y., Kubota, R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341(1), 276–286 (2008)

    Article  MathSciNet  Google Scholar 

  38. Takahashi, W.: Fixed point theorems for new nonlinear mappings in a Hilbert space. J. Nonlinear Convex Anal. 11(1), 79–88 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Yambangwai, D., Aunruean, S., Thianwan, T.: A new modified three-step iteration method for G-nonexpansive mappings in Banach spaces with a graph. Numer. Algor. 84, 53765

Download references

Funding

There is no sponsor.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally and significantly in writing this article.

Corresponding author

Correspondence to Hasanen A. Hammad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Fatemeh Panjeh Ali Beik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaolamjiak, W., Yambangwai, D. & Hammad, H.A. Modified Hybrid Projection Methods with SP Iterations for Quasi-Nonexpansive Multivalued Mappings in Hilbert Spaces. Bull. Iran. Math. Soc. 47, 1399–1422 (2021). https://doi.org/10.1007/s41980-020-00448-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-020-00448-9

Keywords

Mathematics Subject Classification

Navigation