Skip to main content
Log in

The Category of Factorization

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We introduce and investigate the category of factorization of a multiplicative, commutative, cancellative, pre-ordered monoid A, which we denote \(\mathcal {F}(A)\). The objects of \(\mathcal {F}(A)\) are factorizations of elements of A, and the morphisms in \(\mathcal {F}(A)\) encode combinatorial similarities and differences between the factorizations. We pay particular attention to the divisibility pre-order and to the monoid \(A=D{\setminus }\{0\}\) where D is an integral domain. Among other results, we show that \(\mathcal {F}(A)\) is a symmetric and strict monoidal category with weak equivalences and compute the associated category of fractions obtained by inverting the weak equivalences. Also, we use this construction to characterize various factorization properties of integral domains: atomicity, unique factorization, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.D., Anderson, D.F., Zafrullah, M.: Factorization in integral domains. J. Pure Appl. Algebra 69(1), 1–19 (1990)

    Article  MathSciNet  Google Scholar 

  2. Bénabou, Jean: Some geometric aspects of the calculus of fractions. Appl. Categ. Struct. 4(2–3), 139–165 (1996). (The European Colloquium of Category Theory (Tours, 1994))

    Article  MathSciNet  Google Scholar 

  3. Chapman, S., Sather-Wagstaff, S.: Irreducible divisor pair domains, preprint

  4. Coykendall, J., Maney, J.: Irreducible divisor graphs. Commun. Algebra 35(3), 885–895 (2007)

    Article  MathSciNet  Google Scholar 

  5. Dwyer, W.G., Hirschhorn, P.S., Kan, D.M., Smith, J.H.: Homotopy Limit Functors on Model Categories and Homotopical Categories, Mathematical Surveys and Monographs, vol. 113. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  6. Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35. Springer, New York (1967)

    Book  Google Scholar 

  7. Gilmer, R.W.: Multiplicative ideal theory, Queen’s Papers in Pure and Applied Mathematics, No. 12, Queen’s University, Kingston, Ont., (1968)

  8. Jaffard, P.: Les systèmes d’idéaux. Travaux et Recherches Mathématiques, IV, Dunod, Paris (1960)

  9. Krull, W.: Allgemeine bewertungstheorie. J. Reine Angew. Math. 167, 160–196 (1932)

    MathSciNet  MATH  Google Scholar 

  10. Lorenzen, P.: Abstrakte Begründung der multiplikativen Idealtheorie. Math. Z. 45, 533–553 (1939)

    Article  MathSciNet  Google Scholar 

  11. Močkoř, J.: Groups of divisibility, Mathematics and its Applications (East European Series). D. Reidel Publishing Co., Dordrecht (1983)

    Google Scholar 

  12. Ohm, J.: Semi-valuations and groups of divisibility. Canad. J. Math. 21, 576–591 (1969)

    Article  MathSciNet  Google Scholar 

  13. Rump, W., Yang, Y.C.: Jaffard-Ohm correspondence and Hochster duality. Bull. Lond. Math. Soc. 40(2), 263–273 (2008)

    Article  MathSciNet  Google Scholar 

  14. Zaks, A.: Half-factorial-domains. Israel J. Math. 37(4), 281–302 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to Jim Coykendall and George Janelidze for their thoughtful suggestions about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean K. Sather-Wagstaff.

Additional information

Communicated by George Janelidze.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodell, B., Sather-Wagstaff, S.K. The Category of Factorization. Appl Categor Struct 28, 975–1012 (2020). https://doi.org/10.1007/s10485-020-09607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-020-09607-9

Keywords

Mathematics Subject Classification

Navigation