Skip to main content
Log in

Bipartite entanglement in Auger ionisation of \({\text{ N }}_{2}\)

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Quantum entanglement and its paradoxical properties are of paramount importance in quantum information theory. In recent years, there has been an increasing interest in the studies of high-dimensional quantum states and their impact on quantum communication as it can encode and process more data. Photonic entanglement is usually an evanescent property as it is destroyed easily by its interaction with an external environment. Electronic qubits are stable and can store information for a long time. However, qudit systems are more efficient, stable and allow noise robustness than qubit system. In this article, we investigate bipartite entanglement between doubly ionised molecular qudit and electronic qubit in the Auger emission process for \(\hbox {N}_{{2}}\) molecule following the absorption of a single photon without observing spin-orbit interaction (SOI). In the absence of SOI, Russell–Saunders coupling (L-S coupling) is applicable. The entanglement properties are estimated on the basis of negativity of partial transpose of the density matrix for Auger ionisation. We find that the entanglement depends on the spins of the singly ionised excited states and doubly ionised states of the molecules as well as on the directions of spin quantisation and of ejection of Auger electrons. A significant effect on the variation of negativity due to the linear dichroism (LD) has also been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J S Bell, Physics 1, 195 (1965)

    Article  Google Scholar 

  2. M A Nielsen and I L Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, England, 2010)

    Book  Google Scholar 

  3. D Bouwmeester, A K Ekert and A Zeilinger, The physics of quantum information, quantum cryptography, quantum teleportation, quantum computation (Springer, Berlin, 2013)

    MATH  Google Scholar 

  4. G Alber, T Berth, M Horodecki, P Horodecki, R Horodecki, M Rötteler, H Weinfurter, R Werner and A Zeilinger, Quantum information: An introduction to basic theoretical concepts and experiments (Springer, Berlin, 2000)

    MATH  Google Scholar 

  5. A Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. M Horodecki, P Horodecki and R Horodecki, Phys. Rev. A 223, 1 (1996)

    Google Scholar 

  7. M Horodecki, P Horodecki and R Horodecki, Phys. Rev. Lett. 80, 5239 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. M Horodecki, P Horodecki and R Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  9. Xu Zong-Cheng, Liang Mai-Lin, ZhangYa-Ting and Yao Jian-Quan, Pramana – J. Phys. 86, 495 (2016)

  10. Wei Deng and Yong Deng, Pramana – J. Phys. 91: 45 (2018)

  11. N Chandra and R Ghosh, Quantum entanglement in electron optics (Springer-Verlag, Berlin, 2013)

    Book  Google Scholar 

  12. Jianwei Wang et alScience 360, 285 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Nurul T Islam, High-rate, high-dimensional quantum key distribution systems (Springer Nature, Switzerland, 2018)

  14. Daniele Cozzolino, Beatrice Da Lio, Davide Bacco and Leif Katsuo Oxenløwe, Adv. Quantum Technol. 1900038, 1 (2019)

  15. A Babazadeh, M Erhard, F Wang, M Malik, R Nouroozi, M Krenn and A Zeilinger, Phys. Rev. Lett. 119, 180510 (2017)

    Article  ADS  Google Scholar 

  16. A Vaziri, J W Pan, T Jennewein, G Weihs and Zeilinger, Phys. Rev. Lett. 91, 227902 (2003)

  17. Shu-Qian Shen, Jin-Min Liang, Ming Li, Juan Yu and Shao-Ming Fei, Phys. Rev. A 101, 012312 (2020)

    Article  ADS  Google Scholar 

  18. Chee Kong Lee, Mojdeh S Najafabadi, Daniel Schumayer, Leong Chuan Kwek and David A W Hutchinson, Sci. Rep. 9, Article number: 9147 (2019)

  19. S Parida and N Chandra, Phys. Rev. A 79, 062509 (2009)

    Article  ADS  Google Scholar 

  20. M Chakraborty and S Sen, J. Electron. Spectrosc. Relat. Phenom. 203, 60 (2015)

    Article  Google Scholar 

  21. M Chakraborty and S Sen, TMLAI 7, 1 (2019)

    Article  Google Scholar 

  22. N Chandra and R Ghosh, Phys. Rev. A 74, 052329 (2006)

    Article  ADS  Google Scholar 

  23. S Parida and N Chandra, Eur. Phys. J. D 65, 303 (2011)

    Article  ADS  Google Scholar 

  24. S Lee, D P Chi, S D Oh and J Kim, Phys. Rev. A 41, 495301 (2008)

    Google Scholar 

  25. C H Bennett, D P DiVincenzo, J Smolin and W K Wootters, Phys. Rev. A 54, 3824 (1996)

  26. G Breit and H A Bethe, Phys. Rev. 93, 88 (1954)

    Article  ADS  Google Scholar 

  27. N Chandra and M Chakraborty, J. Chem. Phys. 97, 236 (1992)

    Article  ADS  Google Scholar 

  28. A R Edmonds, Angular momentum in quantum mechanics (Princeton University Press, Princeton, 2016)

    MATH  Google Scholar 

  29. D A Varshalovich, A N Moskalev and V K Khersonskii, Quantum theory of angular momentum (World Scientific, Singapore, 1989)

    Google Scholar 

  30. A de-Shalit and I Talmi, Nuclear shell theory: Pure and applied physics, V14 (Literary Licensing, LLC, 2013)

  31. D Stalherm, B Cleff, H Hillig and W Mehlhorn, Z Naturforsch. 24a, 1728 (1969)

  32. F Martin, D A Horner, W Vanroose, T N Rescigno and C W McCurdy (Lawrence Barkley National Laboratory 2005), http://escholarship.org/uc/item/1kn7g7xc.

  33. K Blum, Density matrix theory and applications 3rd edn (Springer-Verlag Berlin and Heidelberg GmbH & Co., 2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Chakraborty, M. Bipartite entanglement in Auger ionisation of \({\text{ N }}_{2}\). Pramana - J Phys 94, 125 (2020). https://doi.org/10.1007/s12043-020-01989-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01989-8

Keywords

PACS Nos

Navigation