Skip to main content
Log in

Electrochemical quartz crystal microbalance study of magnesium porphine electropolymerization process

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Material and charge balances in the course of the electropolymerization process of the non-substituted Mg(II) porphine (MgP) at a low oxidation potential from its acetonitrile solutions of various concentrations have been studied via the in situ electrochemical quartz crystal microbalance method (EQCM). Thus, registered electrode mass increase due to the MgP oxidation at its surface has been used, in combination with in situ spectroelectrochemical data, for determination of the key parameters of the polymerization process and of the magnesium polyporphine films deposited on the electrode surface: current efficiency of the film deposition process, average charge spent for transformation of a monomer molecule into monomer unit inside the film, number of monomer units inside the deposited film, average number of valence bonds per one monomer unit inside the film. Besides, the EQCM method applied to the discharge process of the electropolymerized film has allowed us to estimate the average charging (oxidation) degree of the monomer unit inside the film at the polymerization potential and the degree of the solvent participation in the course of the polymer’s redox transitions. It has been established that the number of bonds between porphine units is within the range of 2.2 to 2.4, with its slight increase for films deposited at higher monomer concentrations. Conclusions on the structure of polyporphine chains have been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weidlich C, Mangold KM, Jüttner K (2005) EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes. Electrochim Acta 50(7-8):1547–1552

    CAS  Google Scholar 

  2. Xie Q, Kuwabata S, Yoneyama H (1997) EQCM studies on polypyrrole in aqueous solutions. J Electroanal Chem 420(1-2):219–225

    CAS  Google Scholar 

  3. Syritski V, Öpik A, Forsen O (2003) Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochim Acta 48(10):1409–1417

    CAS  Google Scholar 

  4. Bruckenstein S, Brzezinska K, Hillman AR (2000) EQCM studies of polypyrrole films. 1. Exposure to aqueous sodium tosylate solutions under thermodynamically permselective conditions. Electrochim Acta 45(22-23):3801–3811

    CAS  Google Scholar 

  5. Mirmohseni A, Milani M, Hassanzadeh V (1999) Ion exchange properties of polypyrrole studied by electrochemical quartz crystal microbalance (EQCM). Polym Int 48(9):873–878

    CAS  Google Scholar 

  6. Bruckenstein S, Brzezinska K, Hillman AR (2000) EQCM studies of polypyrrole films. Part 2. Exposure to aqueous sodium tosylate solutions under thermodynamically non-permselective conditions. PCCP 2(6):1221–1229

    CAS  Google Scholar 

  7. Borjas R, Buttry DA (1991) EQCM studies of film growth, redox cycling, and charge trapping of n-doped and p-doped poly (thiophene). Chem Mater 3(5):872–878

    CAS  Google Scholar 

  8. Keita B, Mahmoud A, Nadjo L (1995) EQCM monitoring of charge transport processes in polyaniline films doped with 12-silicomolybdic heteropolyanion. J Electroanal Chem 386(1-2):245–251

    Google Scholar 

  9. Zhuzhel’skii DV, Krylova VA, Ivanov VD, Malev VV (2009) Mechanism of electrochemical reactions of polyaniline films formed under the conditions of cathodic oxygen reduction. Russ J Electrochem 45(2):145–151

    Google Scholar 

  10. Widera J, Skompska M, Jackowska K (2001) The influence of anions on formation, electroactivity, stability and morphology of poly (o-methoxyaniline) films—EQCM studies. Electrochim Acta 46(26-27):4125–4131

    CAS  Google Scholar 

  11. Henderson MJ, Hillman AR, Vieil E (1998) A combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) study of a poly (o-toluidine) modified electrode in perchloric acid solution. J Electroanal Chem 454(1-2):1–8

    CAS  Google Scholar 

  12. Schneider O, Bund A, Ispas A, Borissenko N, Zein El Abedin S, Endres F (2005) An EQCM study of the electropolymerization of benzene in an ionic liquid and ion exchange characteristics of the resulting polymer film. J Phys Chem B 109(15):7159–7168

    CAS  PubMed  Google Scholar 

  13. Efimov I, Winkels S, Schultze JW (2001) EQCM study of electropolymerization and redox cycling of 3, 4-polyethylenedioxythiophen. J Electroanal Chem 499(1):169–175

    CAS  Google Scholar 

  14. Malev VV, Kondratiev VV, Timonov AM (2012) Polymer modified electrodes. Nestor-History, Saint Petersburg

    Google Scholar 

  15. Eliseeva SN, Babkova TA, Kondratiev VV (2009) Mass transfer of ions and solvent at redox processes in poly-3, 4-ethylenedioxythiophene films. Russ J Electrochem 45(2):152–159

    CAS  Google Scholar 

  16. Kondratiev VV, Levin OV, Malev VV (2014) In: Michaelson L (ed) Advances in conducting polymers research. New York, Nova Science Publishers Inc

    Google Scholar 

  17. Kurdakova VV, Antonov NG, Malev VV, Kondrat’ev VV (2006) Transport of ionic charge and solvent in poly (3-octylthiophene) films: an electrochemical quartz crystal microbalance study. Russ J Electrochem 42(4):299–305

    CAS  Google Scholar 

  18. Kondratiev VV, Pogulaichenko NA, Hui S, Tolstopjatova EG, Malev VV (2012) Electroless deposition of gold into poly-3, 4-ethylenedioxythiophene films and their characterization performed in chloride-containing solutions. J Solid State Electrochem 16(3):1291–1299

    CAS  Google Scholar 

  19. Kondratiev VV, Babkova TA, Tolstopjatova EG (2013) PEDOT-supported Pd nanoparticles as a catalyst for hydrazine oxidation. J Solid State Electrochem 17(6):1621–1630

    CAS  Google Scholar 

  20. Kondratiev VV, Babkova TA, Eliseeva SN (2012) Structure and electrochemical properties of composite films based on poly-3, 4-ethylenedioxythiophene with metallic palladium inclusions. Russ J Electrochem 48(2):205–211

    CAS  Google Scholar 

  21. Tolstopyatova EG, Pogulyaichenko NA, Kondratiev VV (2014) Synthesis and electrochemical properties of composite films based on poly-3,4-ethylenedioxythiophene with inclusions of silver particles. Russ J Electrochem 50(6):510–516

    CAS  Google Scholar 

  22. Zhuzhelskii DV, Tolstopjatova EG, Volkov AI, Eliseeva SN, Kondratiev VV (2019) Microgravimetric study of electrochemical properties of PEDOT/WO 3 composite films in diluted sulfuric acid. J Solid State Electrochem 23(12):3275–3285

    CAS  Google Scholar 

  23. Nizhegorodova AO, Eliseeva SN, Tolstopjatova EG, Láng GG, Zalka D, Ujvári M, Kondratiev VV (2018) EQCM study of redox properties of PEDOT/MnO 2 composite films in aqueous electrolytes. J Solid State Electrochem 22(8):2357–2366

    CAS  Google Scholar 

  24. Kondratiev VV, Malev VV, Eliseeva SN (2016) Composite electrode materials based on conducting polymers loaded with metal nanostructures. Russ Chem Rev 85(1):14–37

    CAS  Google Scholar 

  25. Jusys Z, Massong H, Baltruschat H (1999) A new approach for simultaneous DEMS and EQCM: electro-oxidation of adsorbed CO on Pt and Pt-Ru. J Electrochem Soc 146(3):1093–1098

    CAS  Google Scholar 

  26. Lyon LA, Hupp JT (1995) Energetics of semiconductor electrode/solution interfaces: EQCM evidence for charge-compensating cation adsorption and intercalation during accumulation layer formation in the titanium dioxide/acetonitrile system. J Phys Chem 99(43):15718–15720

    CAS  Google Scholar 

  27. Levi MD, Levy N, Sigalov S, Salitra G, Aurbach D, Maier J (2010) Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. J Amer Chem Soc 132(38):13220–13222

    CAS  Google Scholar 

  28. Vorotyntsev MA, Konev DV, Devillers CH, Bezverkhyy I, Heintz O (2010) Magnesium (II) polyporphine: the first electron-conducting polymer with directly linked unsubstituted porphyrin units obtained by electrooxidation at a very low potential. Electrochim Acta 55(22):6703–6714

    CAS  Google Scholar 

  29. Vorotyntsev MA, Konev DV, Devillers CH, Bezverkhyy I, Heintz O (2011) Electroactive polymeric material with condensed structure on the basis of magnesium (II) polyporphine. Electrochim Acta 56(10):3436–3442

    CAS  Google Scholar 

  30. Konev DV, Devillers CH, Lizgina KV, Zyubina TS, Zyubin AS, Maiorova-Valkova LA, Vorotyntsev MA (2014) Synthesis of new electroactive polymers by ion-exchange replacement of Mg (II) by 2H+ or Zn (II) cations inside Mg (II) polyporphine film, with their subsequent electrochemical transformation to condensed-structure materials. Electrochim Acta 122:3–10

    CAS  Google Scholar 

  31. Konev DV, Lizgina KV, Khairullina DK, Shamraeva MA, Devillers CH, Vorotyntsev MA (2016) Preparation of cobalt polyporphine and its catalytic properties in oxygen electroreduction. Russ J Electrochem 52(8):778–787

    CAS  Google Scholar 

  32. Rolle SD, Konev DV, Devillers CH, Lizgina KV, Lucas D, Stern C, Herbst F, Heintz O, Vorotyntsev MA (2016) Efficient synthesis of a new electroactive polymer of Co (II) porphine by in-situ replacement of Mg (II) inside Mg (II) polyporphine film. Electrochim Acta 204:276–286

    CAS  Google Scholar 

  33. Istakova OI, Konev DV, Zyubin AS, Devillers CH, Vorotyntsev MA (2016) Electrochemical route to Co (II) polyporphine. J Solid State Electrochem 20(11):3189–3197

    CAS  Google Scholar 

  34. Konev DV, Istakova OI, Dembinska B, Skunik-Nuckowska M, Devillers CH, Heintz O, Kulesza PJ, Vorotyntsev MA (2018) Electrocatalytic properties of manganese and cobalt polyporphine films toward oxygen reduction reaction. J Electroanal Chem 816:83–91

    CAS  Google Scholar 

  35. Konev DV, Istakova OI, Sereda ОА, Shamraeva МА, Devillers CH, Vorotyntsev MA (2015) In situ UV-visible spectroelectrochemistry in the course of oxidative monomer electrolysis. Electrochim Acta 179:315–325

    CAS  Google Scholar 

  36. Istakova OI, Konev DV, Goncharova OA, Medvedeva TO, Devillers CH, Vorotyntsev MA (2020) Methodology based on a combination of spectroelectrochemistry and electrochemical quartz crystal microbalance for determination of the key parameters of a conjugated polymer electrodeposition. Submitted to Russ J Electrochem

  37. Dogutan DK, Ptaszek M, Lindsey JS (2007) Direct synthesis of magnesium porphine via 1-formyldipyrromethane. J Org Chem 72(13):5008–5011

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Konev DV, Devillers CH, Lizgina KV, Baulin VE, Vorotyntsev MA (2015) Electropolymerization of non-substituted Mg (II) porphine: effects of proton acceptor addition. J Electroanal Chem 737:235–242

    CAS  Google Scholar 

  39. Damaskin BB, Petrii OA, Podlovchenko BI, Safonov VA, Stenina EV, Fedorovich NV (1991) Praktikum po Elektrokhimii (in Russian). Vysshaya Shkola, Moscow

    Google Scholar 

  40. Topart PA, Noel MAM (1994) High-frequency impedance analysis of quartz crystal microbalances. 2. Electrochemical deposition and redox switching of conducting polymers. Anal Chem 66(18):2926–2934

    CAS  Google Scholar 

  41. Heinze JR, Bilger R (1993) Ion movements during redox switching of polypyrrole—experiment and simulation. Ber Bunsenges Phys Chem 97(3):502–506

    CAS  Google Scholar 

  42. Skompska M, Vorotyntsev MA, Goux J, Moise C, Heinz O, Cohen YS, Levi MD, Gofer Y, Salitra G, Aurbach D (2005) Mechanism of redox transformation of titanocene dichloride centers immobilized inside a polypyrrole matrix—EQCM and XPS evidences. Electrochim Acta 50(7-8):1635–1641

    CAS  Google Scholar 

  43. Vorotyntsev MA, Vieil E, Heinze J (1998) Charging process in polypyrrole films: effect of ion association. J Electroanal Chem 450(1):121–141

    CAS  Google Scholar 

  44. Chao F, Costa M, Tian C (1995) Modification of poly (3-methylthiophene)(PMeT) structure during electrochemical doping-undoping, studied by in situ atomic force microscopy (ECAFM). Synth Met 75(2):85–94

    CAS  Google Scholar 

  45. Duffitt GL, Pickup PG (1991) Permselectivity of polypyrrole in acetonitrile. J Phys Chem 95(24):9634–9635

    CAS  Google Scholar 

  46. Duffitt GL, Pickup PG (1992) Enhanced ionic conductivity of polypyrrole due to incorporation of excess electrolyte during potential cycling. J Chem Soc Faraday Trans 88(10):1417–1423

    CAS  Google Scholar 

  47. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers-persistent models and new concepts. Chem Rev 110(8):4724–4771

    CAS  PubMed  Google Scholar 

  48. Tsierkezos NG, Philippopoulos AI (2009) Studies of ion solvation and ion association of n-tetrabutylammonium hexafluorophosphate and n-tetrabutylammonium tetraphenylborate in various solvents. Fluid Phase Equilib 277(1):20–28

    CAS  Google Scholar 

  49. Vorotyntsev MA, Zinovyeva VA, Konev DV (2010) In: Cosnier S, Karyakin A (eds) Electropolymerization: concepts, materials and applications. Weinheim, Wiley-VCH

    Google Scholar 

Download references

Acknowledgments

The study was carried out within the framework of the thematic map of the IPCP RAS №АААА - А19-119061890019-5 (theme 0089-2019-0007) with the use of resources of National Technology Initiative Competence Center at IPCP RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Konev.

Additional information

Dedicated to our esteemed friend and colleague, Prof. Dr. Fritz Scholtz, at the occasion of his 65th birthday.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Istakova, O.I., Konev, D.V., Goncharova, O.A. et al. Electrochemical quartz crystal microbalance study of magnesium porphine electropolymerization process. J Solid State Electrochem 24, 3191–3206 (2020). https://doi.org/10.1007/s10008-020-04800-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04800-1

Keywords

Navigation