Skip to main content
Log in

Sol–gel processing of polyhedral oligomeric silsesquioxanes: nanohybrid materials incorporating T8 and T10 cages

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Polyhedral oligomeric silsesquioxanes (POSS, T8 and T10) have been incorporated in hybrid silica materials via hydrolysis-condensation of octa- and deca(triethoxysilylated)-POSS precursors, respectively. The precursors were synthesized via a thiol-ene Click reaction involving the corresponding octastyryl-T8 or decastyryl-T10 molecules and thiopropyltriethoxysilane. Following addition of water and HCl (as catalyst) to a solution of the precursors, gels were formed within a few minutes. The resulting hybrids were characterized by TEM, FTIR, N2 physisorption analyses, solid-state NMR (29Si and 13C), and TGA, which indicated that the T8 and T10 cages were incorporated and remained intact within the hybrid gel network, with no Si–C cleavage being observed via 29Si NMR. FTIR data indicated that water retained within the gels following drying and aging at ambient temperature exhibited an unusual “connective”, ice-like structure, suggesting that it is initially retained as a key component of the gel network during consolidation and aging at ambient temperature. Following aging, the water was readily removed by evacuation at 100 °C without significantly modifying the network structure, on the basis of the FTIR spectrum of the gel. To the best of our knowledge, this is the first report of the incorporation of T10 cages in such gels.

Highlights

  • New precursors developed, incorporating POSS cages covalently bound to hydrolysable –Si(OEt)3 groups.

  • Intact T8 and T10 POSS covalently incorporated in hybrid silica materials with no Si–C cleavage.

  • First report of materials incorporating intact T10 POSS cages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scott DW (1946) Thermal rearrangement of branched-chain methylpolysiloxanes. J Am Chem Soc 68(3):356–358. https://doi.org/10.1021/ja01207a003

    Article  CAS  Google Scholar 

  2. Barry AJ, Daudt WH, Domicone JJ, Gilkey JW (1955) Crystalline organosilsesquioxanes. J Am Chem Soc 77(16):4248–4252. https://doi.org/10.1021/ja01621a025

    Article  CAS  Google Scholar 

  3. Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. J Am Chem Soc 120(33):8380–8391. https://doi.org/10.1021/ja9808853

    Article  CAS  Google Scholar 

  4. Hoebbel D, Endres K, Reinert T, Pitsch I (1994) Inorganic-organic polymers derived from functional silicic acid derivatives by additive reaction. J Non Cryst Solids 176(2–3):179–188. https://doi.org/10.1016/0022-3093(94)90076-0

    Article  CAS  Google Scholar 

  5. Morrison JJ, Love CJ, Manson BW, Shannon IJ, Morris RE (2002) Synthesis of functionalised porous network silsesquioxane polymers. J Mater Chem 12(11):3208–3212. https://doi.org/10.1039/b204240a

    Article  CAS  Google Scholar 

  6. Sangtrirutnugul P, Chaiprasert T, Hunsiri W, Jitjaroendee T, Songkhum P, Laohhasurayotin K, Osotchan T, Ervithayasuporn V (2017) Tunable porosity of cross-linked-polyhedral oligomeric silsesquioxane supports for palladium-catalyzed aerobic alcohol oxidation in water. ACS Appl Mater Interfaces 9(14):12812–12822. https://doi.org/10.1021/acsami.7b03910

    Article  CAS  Google Scholar 

  7. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173. https://doi.org/10.1021/cr900201r

    Article  CAS  Google Scholar 

  8. Laine RM (2005) Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem 15(35-36):3725–3744. https://doi.org/10.1039/b506815k

    Article  Google Scholar 

  9. Harrison PG, Kannengiesser R (1996) Porous materials derived from trigonal-prismatic Si6O9 and cubane Si8O12 cage monomers. Chem Commun 3:415–416. https://doi.org/10.1039/cc9960000415

    Article  Google Scholar 

  10. Akbari A, Arsalani N, Amini M, Jabbari E (2016) Cube-octameric silsesquioxane-mediated cargo copper Schiff base for efficient click reaction in aqueous media. J Mol Catal A Chem 414:47–54. https://doi.org/10.1016/j.molcata.2015.12.022

    Article  CAS  Google Scholar 

  11. Köytepe S, Demirel MH, Gültek A, Seçkin T (2014) Metallo-supramolecular materials based on terpyridine-functionalized polyhedral silsesquioxane. Polym Int 63(4):778–787. https://doi.org/10.1002/pi.4596

    Article  CAS  Google Scholar 

  12. Kowalewska A (2017) Self-assembling polyhedral silsesquioxanes—Structure and properties. Curr Org Chem 21(14):1243–1264. https://doi.org/10.2174/1385272821666170303103747

    Article  CAS  Google Scholar 

  13. Heeley E, El Aziz Y, Ellingford C, Jetybayeva A, Wan C, Crabb E, Taylor PG, Bassindale A (2019) Self-assembly of fluoride-encapsulated polyhedral oligomeric silsesquioxane (POSS) nanocrystals. Crystengcomm 21(4):710–723. https://doi.org/10.1039/C8CE01750F

    Article  CAS  Google Scholar 

  14. Seino M, Wang W, Lofgreen JE, Puzzo DP, Manabe T, Ozin GA (2011) Low-k periodic mesoporous organosilica with air walls: POSS-PMO. J Am Chem Soc 133(45):18082–18085. https://doi.org/10.1021/ja2080136

    Article  CAS  Google Scholar 

  15. Kausar A (2017) State-of-the-art overview on polymer/POSS nanocomposite. Polym-Plast Technol Eng 56(13):1401–1420. https://doi.org/10.1080/03602559.2016.1276592

    Article  CAS  Google Scholar 

  16. Zhou H, Ye Q, Xu J (2017) Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater Chem Front 1(2):212–230. https://doi.org/10.1039/c6qm00062b

    Article  CAS  Google Scholar 

  17. Chiacchio MA, Borrello L, Di Pasquale G, Pollicino A, Bottino FA, Rescifina A (2005) Synthesis of functionalized polyhedral oligomeric silsesquioxane (POSS) macromers by microwave assisted 1,3-dipolar cycloaddition. Tetrahedron 61(33):7986–7993. https://doi.org/10.1016/j.tet.2005.06.006

    Article  CAS  Google Scholar 

  18. Haddad TS, Viers BD, Phillips SH (2001) Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. J Inorg Organomet Polym 11(3):155–164

    Article  CAS  Google Scholar 

  19. Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: Polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8(1):21–29. https://doi.org/10.1016/j.cossms.2004.03.002

    Article  CAS  Google Scholar 

  20. Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. J Polym Sci Part B 36(11):1857–1872. https://doi.org/10.1002/(SICI)1099-0488(199808)36:113.0.CO;2-N

    Article  CAS  Google Scholar 

  21. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: The next generation material for biomedical applications. Acc Chem Res 38(11):879–884. https://doi.org/10.1021/ar050055b

    Article  CAS  Google Scholar 

  22. Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: Polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32(14):1032–1046. https://doi.org/10.1002/marc.201100126

    Article  CAS  Google Scholar 

  23. Solouk A, Cousins BG, Mirahmadi F, Mirzadeh H, Nadoushan MRJ, Shokrgozar MA, Seifalian AM (2015) Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: A preliminary assessment of endothelial cell adhesion and haemocompatibility. Mater Sci Eng C 46:400–408. https://doi.org/10.1016/j.msec.2014.10.065

    Article  CAS  Google Scholar 

  24. Nayyer L, Birchall M, Seifalian AM, Jell G (2014) Design and development of nanocomposite scaffolds for auricular reconstruction. Nanomed Nanotechnol Biol Med 10(1):235–246. https://doi.org/10.1016/j.nano.2013.06.006

    Article  CAS  Google Scholar 

  25. Kannan RY, Salacinski HJ, De Groot J, Clatworthy I, Bozec L, Horton M, Butler PE, Seifalian AM (2006) The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules 7(1):215–223. https://doi.org/10.1021/bm050590z

    Article  CAS  Google Scholar 

  26. Kannan RY, Salacinski HJ, Odlyha M, Butler PE, Seifalian AM (2006) The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: An in vitro study. Biomaterials 27(9):1971–1979. https://doi.org/10.1016/j.biomaterials.2005.10.006

    Article  CAS  Google Scholar 

  27. Quadrelli EA, Basset JM (2010) On silsesquioxanes’ accuracy as molecular models for silica-grafted complexes in heterogeneous catalysis. Coord Chem Rev 254(5-6):707–728. https://doi.org/10.1016/j.ccr.2009.09.031

    Article  CAS  Google Scholar 

  28. Giacalone F, Gruttadauria M (2016) Covalently supported ionic liquid phases: an advanced class of recyclable catalytic systems. ChemCatChem 8(4):664–684. https://doi.org/10.1002/cctc.201501086

    Article  CAS  Google Scholar 

  29. Bivona LA, Giacalone F, Carbonell E, Gruttadauria M, Aprile C (2016) Proximity effect using a nanocage structure: polyhedral oligomeric silsesquioxane-imidazolium tetrachloro-palladate salt as a precatalyst for the suzuki-miyaura reaction in water. ChemCatChem 8(9):1685–1691. https://doi.org/10.1002/cctc.201600155

    Article  CAS  Google Scholar 

  30. Zhou Y, Yang G, Lu C, Nie J, Chen Z, Ren J (2016) POSS supported C2-symmetric bisprolinamide as a recyclable chiral catalyst for asymmetric Aldol reaction. Catal Commun 75:23–27. https://doi.org/10.1016/j.catcom.2015.11.017

    Article  CAS  Google Scholar 

  31. Li Z, Kong J, Wang F, He C (2017) Polyhedral oligomeric silsesquioxanes (POSSs): An important building block for organic optoelectronic materials. J Mater Chem C 5(22):5283–5298. https://doi.org/10.1039/c7tc01327b

    Article  CAS  Google Scholar 

  32. Gnanasekaran D, Madhavpan K, Reddy RSR (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: A review. J Sci Ind Res 68(6):437–464

    CAS  Google Scholar 

  33. Chanmungkalakul S, Ervithayasuporn V, Boonkitti P, Phuekphong A, Prigyai N, Kladsomboon S, Kiatkamjornwong S (2018) Anion identification using silsesquioxane cages. Chem Sci 9(40):7753–7765. https://doi.org/10.1039/c8sc02959h

    Article  CAS  Google Scholar 

  34. Chanmungkalakul S, Ervithayasuporn V, Hanprasit S, Masik M, Prigyai N, Kiatkamjornwong S (2017) Silsesquioxane cages as fluoride sensors. Chem Commun 53(89):12108–12111. https://doi.org/10.1039/c7cc06647c

    Article  CAS  Google Scholar 

  35. Liu H, Liu H (2017) Selective dye adsorption and metal ion detection using multifunctional silsesquioxane-based tetraphenylethene-linked nanoporous polymers. J Mater Chem A 5(19):9156–9162. https://doi.org/10.1039/c7ta01255a

    Article  CAS  Google Scholar 

  36. Laird M, Van der Lee A, Dumitrescu D, Carcel C, Ouali A, Bartlett JR, Unno M, Wong Chi Man M (2020) New Functionalized cage silsesquioxanes as nanoblocks for 3-D assembly. Organometallic (in press). https://doi.org/10.1021/acs.organomet.0c00119

  37. Ramesh S, Kim HS, Sivasamy A, Kim J-H (2018) Synthesis of octa(maleimidophenyl) silsesquioxane-SiO2/TiO2 hybrid nanocomposites: adsorption behavior for the removal of an organic methylene blue dye and antimicrobial activity against pathogens. Polym-Plast Technol Eng 57(3):185–195. https://doi.org/10.1080/03602559.2017.1320716

    Article  CAS  Google Scholar 

  38. Ramesh S, Kim J, Kim J-H (2015) Characteristic of hybrid cellulose-amino functionalized POSS-silica nanocomposite and antimicrobial activity. J Nanomater 1–10. https://doi.org/10.1155/2015/936590

  39. Liu Y, Chen Y, Yang H, Nie L, Yao S (2013) Cage-like silica nanoparticles-functionalized silica hybrid monolith for high performance capillary electrochromatography via “ one-pot” process. J Chromatogr A 1283:132–139. https://doi.org/10.1016/j.chroma.2013.01.112

    Article  CAS  Google Scholar 

  40. Zajickova Z (2017) Advances in the development and applications of organic-silica hybrid monoliths. J Sep Sci 40(1):25–48. https://doi.org/10.1002/jssc.201600774

    Article  CAS  Google Scholar 

  41. Gunji T, Shioda T, Tsuchihira K, Seki H, Kajiwara T, Abe Y (2010) Preparation and properties of polyhedral oligomeric silsesquioxane-polysiloxane copolymers. Appl Organomet Chem 24(8):545–550. https://doi.org/10.1002/aoc.1562

    Article  CAS  Google Scholar 

  42. Zhang L, Abbenhuis HCL, Yang Q, Wang YM, Magusin PCMM, Mezari B, Van Santen RA, Li C (2007) Mesoporous organic-inorganic hybrid materials built using polyhedral oligomeric silsesquioxane blocks. Angew Chem Int Ed 46(26):5003–5006. https://doi.org/10.1002/anie.200700640

    Article  CAS  Google Scholar 

  43. Wang L, Guo R, Ren J, Song G, Chen G, Zhou Z, Li Q (2020) Preparation of superhydrophobic and flexible polysiloxane aerogel. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.01.033

  44. Li Y, Zhang WB, Hsieh IF, Zhang G, Cao Y, Li X, Wesdemiotis C, Lotz B, Xiong H, Cheng SZD (2011) Breaking symmetry toward nonspherical janus particles based on polyhedral oligomeric silsesquioxanes: Molecular design, “click” synthesis, and hierarchical structure. J Am Chem Soc 133(28):10712–10715. https://doi.org/10.1021/ja202906m

    Article  CAS  Google Scholar 

  45. Li Y, Dong XH, Guo K, Wang Z, Chen Z, Wesdemiotis C, Quirk RP, Zhang WB, Cheng SZD (2012) Synthesis of shape amphiphiles based on POSS tethered with two symmetric/asymmetric polymer tails via sequential “grafting-from” and thiol-ene “click” chemistry. ACS Macro Lett 1(7):834–839. https://doi.org/10.1021/mz300196x

    Article  CAS  Google Scholar 

  46. Rikowski E, Marsmann HC (1997) Cage-rearrangement of silsesquioxanes. Polyhedron 16(19):3357–3361. https://doi.org/10.1016/S0277-5387(97)00092-2

    Article  CAS  Google Scholar 

  47. Fidalgo A, Ilharco LM (2004) Chemical tailoring of porous silica xerogels: Local structure by vibrational spectroscopy. Chem - Eur J 10(2):392–398. https://doi.org/10.1002/chem.200305079

    Article  CAS  Google Scholar 

  48. Fidalgo A, Ilharco LM (2005) The influence of the wet gels processing on the structure and properties of silica xerogels. Microporous Mesoporous Mater 84(1-3):229–235. https://doi.org/10.1016/j.micromeso.2005.04.021

    Article  CAS  Google Scholar 

  49. Perry CC, Li X (1991) Structural studies of gel phases. Part 1. - Infrared spectroscopic study of silica monoliths; the effect of thermal history on structure. J Chem Soc, Faraday Trans 87(5):761–766. https://doi.org/10.1039/FT9918700761

    Article  CAS  Google Scholar 

  50. Crupi V, Majolino D, Longo F, Migliardo P, Venuti V (2006) FTIR/ATR study of water encapsulated in Na-A and Mg-exchanged A-zeolites. Vib Spectrosc 42(2):375–380. https://doi.org/10.1016/j.vibspec.2006.05.007

    Article  CAS  Google Scholar 

  51. Crupi V, Longo F, Majolino D, Venuti V (2006) Vibrational properties of water molecules adsorbed in different zeolitic frameworks. J Phys: Condens Matter 18(15):3563–3580. https://doi.org/10.1088/0953-8984/18/15/004

    Article  CAS  Google Scholar 

  52. Falk M (1984) The frequency of the HOH bending fundamental in solids and liquids. Spectrochim Acta Part. A Mol Spectrosc 40(1):43–48. https://doi.org/10.1016/0584-8539(84)80027-6

    Article  Google Scholar 

  53. Chaudhari A (2010) Hydrogen bonding interaction between 1,4-dioxane and water. Int J Quantum Chem 110(5):1092–1099. https://doi.org/10.1002/qua.22143

    Article  CAS  Google Scholar 

  54. Crupi V, Majolino D, Venuti V (2004) Diffusional and vibrational dynamics of water in NaA zeolites by neutron and Fourier transform infrared spectroscopy. J Phys: Condens Matter 16(45):S5297–S5316. https://doi.org/10.1088/0953-8984/16/45/001

    Article  CAS  Google Scholar 

  55. Blanco I, Abate L, Bottino FA (2017) Mono substituted octaphenyl POSSs: The effects of substituents on thermal properties and solubility. Thermochim Acta 655:117–123. https://doi.org/10.1016/j.tca.2017.06.019

    Article  CAS  Google Scholar 

  56. Fan H, Yang R (2014) Thermal decomposition of polyhedral oligomeric octaphenyl, octa(nitrophenyl), and octa(aminophenyl) silsesquioxanes. J Therm Anal Calor 116(1):349–357. https://doi.org/10.1007/s10973-013-3554-9

    Article  CAS  Google Scholar 

  57. Zhang Z, Liang G, Lu T (2007) Synthesis and characterization of cage octa(aminopropylsilsesquioxane). J Appl Polym Sci 103(4):2608–2614. https://doi.org/10.1002/app.25304

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Frank Godiard (Plateforme Microscopie Électronique et Analytique, Université de Montpellier) for TEM measurements, as well as Philippe Gaveau and Emmanuel Fernandez (Laboratoire de Mesures Physiques, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier) for solid-state NMR experiments. Funding from the French Ministère de l’Enseignement Supérieur et de la Recherche to support the PhD scholarship of ML is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Laird, J. R. Bartlett or M. Wong Chi Man.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laird, M., Yokoyama, J., Carcel, C. et al. Sol–gel processing of polyhedral oligomeric silsesquioxanes: nanohybrid materials incorporating T8 and T10 cages. J Sol-Gel Sci Technol 95, 760–770 (2020). https://doi.org/10.1007/s10971-020-05314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05314-y

Keywords

Navigation