Skip to main content
Log in

SrZr0.9Y0.1O3−δ thin films by in-situ synthesis of triple alkoxide for protonic ceramic electrolyser membranes

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Synthesis of the proton-conducting electrolyte SrZr0.9Y0.1O3−δ(SZY) was undertaken by the sol–gel method employing an all-alkoxide route from reaction of strontium alkoxide produced in-situ and commercial zirconium and yttrium alkoxides. The solution was homogenized by a previous ligand exchange in 2-methoxyethanol to control the polycondensation rate and achieve SZY at the low final firing temperature of 700–800 °C. SZY thin films (~270 nm) were assisted by dip-coating on different substrates and characterized by scanning and transmission electron microscopy, grazing X-ray diffraction and confocal micro-Raman spectroscopy, revealing well-crystallized SZY phase with orthorhombic symmetry (space group, Pnma). Impedance spectroscopy of a thin film deposited on a quartz substrate revealed that protons contribute to transport in wet conditions as confirmed by a lower conductivity in D2O-humidified air (1.02 eV) compared to H2O-wetted air (0.99 eV), with the difference in activation energy consistent with a conductive isotope effect.

Proton-conducting electrolyte SrZr0.9Y0.1O3−δ was synthesized by an all-alkoxide sol–gel method via initial in situ formation of strontium alkoxide. SZY thin-film was well crystallized with orthorhombic symmetry at only 700 °C, presenting conductivity similar to ceramic material assisted by Zn-sintering additive and sintered at high temperature.

Highlights

  • Proton-conducting electrolytes SrZr0.9Y0.1O3−δ thin-films were successfully obtained.

  • Novel all-alkoxide sol–gel route via in-situ synthesis of triple alkoxide was performed.

  • Ligand exchange in 2-methoxyethanol allows soft thermal treatment SZY thin-film was well crystallized at low temperature and time (700 °C, 1 h).

  • Protonic electrical contribution is present in wet conditions.

  • SZY thin-films synthesized at 700 °C present similar conductivity than a pellet at 1300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Winter CJ (2005) Int J Hydrog Energy 30:681–685

    CAS  Google Scholar 

  2. Winter CJ (2009) Int J Hydrog Energy 34:S1–S52

    CAS  Google Scholar 

  3. Ferrero D, Lanzini A, Santarelli M, Leone P (2013) Int J Hydrog Energy 38:3523–3536

    CAS  Google Scholar 

  4. Petipas F, Brisse A, Bouallou C (2014) Int J Hydrog Energy 39:5505–5513

    CAS  Google Scholar 

  5. Slodczyk A, Colomban P, André G, Zaafrani O, Grasset F, Lacroix O, Sala B (2012) Solid State Ion 225:214–218

    CAS  Google Scholar 

  6. Slodczyk A, Zaafrani O, Sharp MD, Kilner JA, Dabrowski B, Lacroix O, Colomban P (2013) Membranes 3:311–330

    Google Scholar 

  7. Heras-Juaristi G, Pérez-Coll D, Mather GC (2016) J Power Sources 331:435–444

    CAS  Google Scholar 

  8. Hubert-Pfalzgraf LG, Daniele S, Decams J, Vaissermann M (1997) J Sol-Gel Sci Technol 8(1-3):49–53

    CAS  Google Scholar 

  9. Veith M, Mathur S, Mathur C (1998) Polyhedron 17:1005–1034

    CAS  Google Scholar 

  10. Veith M, Mathur S, Lecerf N, Huch V, Decker T, Beck HP, Eiser W, Haberkorn RJ (2000) Sol-Gel Sci Technol 17:145–158

    CAS  Google Scholar 

  11. Colomban P (2012) Sol-Gel routes and proton conductors. In: Aparicio M, Jitianu A, Klein LC (eds) Sol-gel processing for conventional and alternative energy. Springer Science + Business Media Publishing, Basel, chapter 4

    Google Scholar 

  12. Meyer F, Hempelmann R, Veith M (1999) J Mater Chem 9:1755–1763

    CAS  Google Scholar 

  13. Cervera RB, Oyama Y, Yamaguchi S (2007) Solid State Ion 178:569–574

    CAS  Google Scholar 

  14. Veith M (2002) J. Chem. Soc., Dalton Trans 2405–2412

  15. Cervera RB, Oyama Y, Miyoshi S, Kobayashi K, Yagi T, Yamaguchi S (2008) Solid State Ion 179:236–242

    CAS  Google Scholar 

  16. Hardy A, D’Haen J, Van den Rul H, Van Bael MK, Mullens J (2009) Mater Res Bull 44:734–742

    CAS  Google Scholar 

  17. Celik E, Akin Y, Mutlu IH, Sigmund W, Hascicek YS (2002) Phys C Supercond Appl 382:355–360

    CAS  Google Scholar 

  18. Stenstrop G, Engell J (1990) Less-Common Met J 164165:200–207

    Google Scholar 

  19. Schenbaum J, Rosemberger J, Hempelmann R, Nagengast D, Weidinger A (1995) Solid State Ion 77:222–225

    Google Scholar 

  20. Rørvik PM, Haavik C, Griesche D, Schneller T, Lenrick F, Wallenberg LR (2014) Solid State Ion 262:852–855

    Google Scholar 

  21. Su B, Choy KL (1999) J Mater Chem 9:1629–1644

    CAS  Google Scholar 

  22. Graef M, McHenry ME (2012) Structure of materials. An introduction to crystallography, diffraction and symmetry, Second Ed. Cambridge University Press, Cambridge, ISBN 978-1-107-00587-7

    Google Scholar 

  23. Kessler VG (2018) The synthesis and solution stability of alkoxide precursors. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham, p 31–80

    Google Scholar 

  24. McCleverty JA, Meyer TJ (2003) Comprehensive coordination chemistry II: from biology to nanotechnology. Newnes. Elsevier Science; 2 edn. (3 de diciembre de 2003) Amsterdam

  25. Vaartstra BA, Huffman JC, Streib WE, Caulton KG (1991) Inorg Chem 30:3068–3075

    Google Scholar 

  26. Turevskaya EP, Turova NY, Korolev AV, Yanovsky AI, Struchkov YT (1995) Polyhedron 14:1531–1542

    CAS  Google Scholar 

  27. Chandran K, Nithya R, Sankaran K, Gopalan A, Ganesan V (2006) Bull Mater Sci 29(2):173–179

    CAS  Google Scholar 

  28. Okayama J, Takaya I, Nashimoto K, Sugahara Y (2002) J Am Ceram Soc 85(9):2195–2199

    CAS  Google Scholar 

  29. Mehrotra (1988) J Non Cryst Solids 100:1–15

    CAS  Google Scholar 

  30. Martin E, Dubois P, Jérôme R (2000) Macromolecules 33(5):1530–1535

    CAS  Google Scholar 

  31. Kuhlman R, Vaartstra BA, Streib WE, Huffman JC, Caulton KG (1993) Inorg Chem 32:1272–1278

    CAS  Google Scholar 

  32. Mäntymäki M, Ritala M, Leskelä M (2012) Coord Chem Rev 256:854–8732

    Google Scholar 

  33. Mehrotra RC, Singh A, Sogani S (1994) Chem Rev 94:1643–1660

    CAS  Google Scholar 

  34. J Alfonso-Herrera LA, Huerta-Flores AM, Torres-Martínez L, Rivera-Villanueva JM, Ramírez-Herrera D (2018) J Mat Sci:Mat Electron 29:10395–10410

    Google Scholar 

  35. Malgue YS, Yaday U (2015) J Therm Anal Cal 122(2):589–594

    Google Scholar 

  36. Dubey N, Dubey V (2016). In: Geddes GD (ed) Reviews in fluorescence. Vol 7. Springer International Publishing AG Switzerland, p 155–185

  37. K. Kato (2004). In: Sakka S (ed) Handbook of sol-gel science and technology, Chapter 2 volumen 1. 41:59 Kluwer Academic Publishers, New York

  38. Katayama S, Sckine M (1991) J Mater Res 2:142145

    Google Scholar 

  39. Kato K, Finder J M, Dey SK (1998) Sol-gel route to ferroelectric layer-structured perovskite SrBi2Ta2O9 and SrBi2Nb2O9 thin-films. J Am Ceram Soc 81:1869–1875

  40. Das R, Gupta K, Jana K, Nayak A, Ghosh UC (2016) Adv Mater Lett 7(6):100–150

    Google Scholar 

  41. Colomban P, Zaafrani O, Slodczyk A (2012) Membranes 2:493–509

    CAS  Google Scholar 

  42. Slodczyk A, Tran C, Colomban P (2012) MRS Proc. 1309:mrsf10-1309-ee03-21:1– mrsf10-1309-ee03-21:6

  43. Rose BA, Davis GJ, Ellingham HJT (1948) Discuss Faraday Soc 4:154–162

    Google Scholar 

  44. Slodczyk A, Colomban P, Willemin S, Lacroix O, Sala B (2009) J Raman Spectrosc 40:513–521

    CAS  Google Scholar 

  45. Slodczyk A, Colomban P (2010) Materials 3:5007–5028

    CAS  Google Scholar 

  46. Slodczyk A, Limage MH, Colomban P, Zaafrani O, Grasset F, Loricourt J, Sala B (2011) J Raman Spectrosc 42:2089–2099

    CAS  Google Scholar 

  47. Gouadec G, Colomban P (2007) Prog Cryst Growth Charact Mater 53:1–56

    CAS  Google Scholar 

  48. Slodczyk A, Colomban P, Upasen S, Grasset F, André G (2015) J Phys Chem Solids 83:85–95

    CAS  Google Scholar 

  49. Athar T (2013) Mater Focus 2:450–453

    CAS  Google Scholar 

  50. Kumar A, Kumari S, Borkar H, Katiyar RS, Scott JF (2017) npj Comput Mater 3(2):1–6

    Google Scholar 

  51. Siebert E, Boréave A, Gaillard F, Pagnier T (2013) Solid State Ion 247–248:30–40

    Google Scholar 

  52. Pérez-Coll D, Céspedes E, Dos santos-García AJ, Mather GC, Prieto C (2014) J Mater Chem A2:7170–7174

    Google Scholar 

  53. Pérez-Coll D, Heras-Juaristi G, Fagg DP, Mather GC (2014) J Power Sources 245:445–455

    Google Scholar 

  54. Nowick A, Vaysleyb A (1997) Solid State Ion 97:17–26

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Ministerio de Ciencia, Innovación y Universidades of Spain for financial support (project ENE2015-66183-R, MAT2017-90695-3295-REDT, RTI2018-095088-B-I00 and student grant FPI BES-2016-077023). We also thank D. Ruiz and Dr. A. del Campo for their assistance with the experimental techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadra Mosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triviño-Peláez, Á., Mather, G.C., Pérez-Coll, D. et al. SrZr0.9Y0.1O3−δ thin films by in-situ synthesis of triple alkoxide for protonic ceramic electrolyser membranes. J Sol-Gel Sci Technol 95, 661–669 (2020). https://doi.org/10.1007/s10971-020-05338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05338-4

Keywords

Navigation