Skip to main content
Log in

Characterization of bZIP transcription factors from Dimocarpus longan Lour. and analysis of their tissue-specific expression patterns and response to heat stress

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Members of the bZIP transcription factor family play crucial roles in the regulation of plant development, biosynthesis of secondary metabolites, and response to abiotic and biotic stresses. To date, multiple bZIPs have been identified and investigated in numerous plant species. However, few studies have characterized bZIPs from Dimocarpus longan Lour. In this study, nine bZIPs from D. longan were identified from RNA-Seq data and further verified using the NCBI conserved domain search tool and Pfam database. Bioinformatics tools were used to systematically analyse the physicochemical properties, protein structures, multiple sequence alignment, motif compositions, evolutionary relationships, secondary structures, subcellular localization, phosphorylation sites, signal peptides, GO annotations and protein–protein interactions of the DlbZIPs. The expression patterns of the nine DlbZIPs were evaluated by qRT-PCR in roots and leaves and in response to varying durations of a 38°C heat treatment. DlbZIP3, DlbZIP5, DlbZIP6 and DlbZIP7 were differentially expressed between root and leaf tissues. All nine DlbZIPs responded to heat treatment in both roots and leaves, but their specific expression levels differed. DlbZIP4 and DlbZIP8 were highly expressed in roots after heat treatment, whereas DlbZIP1 and DlbZIP5 were highly expressed in leaves after heat treatment. These findings lay a foundation for increasing active secondary metabolite content and improving abiotic stress tolerance in D. longan using transgenic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Akagi T., Ikegami A., Tsujimoto T., Kobayashi S., Sato A., Kono A. et al. 2009 DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol. 151, 2028–2045.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akagi T., Katayama-Ikegami A., Kobayashi S., Sato A., Kono A. and Yonemor K. 2012 Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol. 158, 1089–1102.

    CAS  PubMed  Google Scholar 

  • Alber T. 1992 Structure of the leucine zipper. Curr. Opin. Genet. Dev. 2, 205–210.

    CAS  PubMed  Google Scholar 

  • Baloglu M. C., Eldem V., Hajyzadeh M. and Unver T. 2014 Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS One 9, e96014.

    PubMed  PubMed Central  Google Scholar 

  • Banerjee A. and Roychoudhury A. 2017 Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254, 3–16.

    CAS  PubMed  Google Scholar 

  • Bentsink L., Jowett J., Hanhart C. J. and Koornneef M. 2006 Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 17042–17047.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao L., Lu X., Zhang P., Wang G., Wei L. and Wang T. 2019 Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses. Int. J. Mol. Sci. 20, 4103–4127.

    CAS  PubMed Central  Google Scholar 

  • Choi H., Hong J., Ha J., Kang J. and Kim S. Y. 2000 ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 275, 1723–1730.

    CAS  PubMed  Google Scholar 

  • Chung Y. C., Lin C. C., Chou C. C. and Hsu C. P. 2010 The effect of Longan seed polyphenols on colorectal carcinoma cells. Eur. J. Clin. Invest. 40, 713–721.

    CAS  PubMed  Google Scholar 

  • Das P., Lakra N., Nutan K. K., Singla-Pareek S. L. and Pareek A. 2019 A unique bZIP transcription factor imparting multiple stress tolerance in rice. Rice 12, 58–73.

    PubMed  PubMed Central  Google Scholar 

  • Feldbrügge M., Sprenger M., Dinkelbach M., Yazaki K., Harter K. and Weisshaar B. 1994 Functional analysis of a light-responsive plant bZIP transcriptional regulator. Plant Cell 6, 1607–1621.

    PubMed  PubMed Central  Google Scholar 

  • Fukazawa J., Sakai T., Ishida S., Yamaguchi I., Kamiya Y. and Takahashi Y. 2000 Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12, 901–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack D., Li C., Mohan H. and Probst N. 2014 Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 5, 151–160.

    PubMed  PubMed Central  Google Scholar 

  • Guruprasad K., Reddy B. V. and Pandit M. W. 1990 Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 4, 155–161.

    CAS  PubMed  Google Scholar 

  • Hou C. W., Lee Y. C., Hung H. F., Fu H. W. and Jeng K. C. 2012 Longan seed extract reduces hyperuricemia via modulating urate transporters and suppressing xanthine oxidase activity. Am. J. Chinese Med. 40, 979–991.

    Google Scholar 

  • Hsieh M. C., Shen Y. J., Kuo Y. H. and Hwang L. S. 2008 Antioxidative activity and active components of longan (Dimocarpus longan Lour.) flower extracts. J. Agric. Food Chem. 56, 7010–7016.

    CAS  PubMed  Google Scholar 

  • Hurst H. C. 1994 Transcription factors. 1: bZIP proteins. Protein Profile 1, 123–168.

    CAS  PubMed  Google Scholar 

  • Jaakola L., Pirttila A. M., Halonen M. and Hohtola A. 2001 Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol. 19, 201–203.

    CAS  PubMed  Google Scholar 

  • Jakoby M., Weisshaar B., Dröge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T. et al. 2002 bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106–111.

    CAS  PubMed  Google Scholar 

  • Ji C., Mao X., Hao J., Wang X., Xue J., Cui H. et al. 2018 Analysis of bZIP Transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii. Int. J. Mol. Sci. 19, 2800–2818.

    PubMed Central  Google Scholar 

  • Jiang G., Jiang Y., Yang B., Yu C., Tsao R., Zhang H. et al. 2009 Structural characteristics and antioxidant activities of oligosaccharides from longan fruit pericarp. J. Agr. Food Chem. 57, 9293–9298.

    CAS  Google Scholar 

  • Jin B. K., Jung Y. K. and Soo Y. K. 2004 Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol. J. 2, 459–466.

    Google Scholar 

  • Kang J. Y., Choi H. I., Im M. Y. and Kim S. Y. 2002 Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S., Kang J. Y., Cho D. I., Park J. H. and Kim S. Y. 2004 ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 40, 75–87.

    CAS  PubMed  Google Scholar 

  • Lai Z. and Lin Y. 2013 Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing. BMC Genomics 14, 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S., Shuman J. D., Guszczynski T., Sakchaisri K., Sebastian T., Copeland T. D. et al. 2010 RSK-mediated phosphorylation in the C/EBP{beta} leucine zipper regulates DNA binding, dimerization, and growth arrest activity. Mol. Cell. Biol. 30, 2621–2635.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q., Jia R., Dou W., Qi J., Qin X., Fu Y. et al. 2019 CsBZIP40, a BZIP transcription factor in sweet orange, plays a positive regulatory role in citrus bacterial canker response and tolerance. PLoS One 14, e0223498.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y., Zou H. F., Wei W., Hao Y. J., Tian A. G., Huang J. et al. 2008 Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228, 225–240.

    CAS  PubMed  Google Scholar 

  • Liu C. C., Chi C., Jin L. J., Zhu J., Yu J. Q. and Zhou Y. H. 2018 The bZIP transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell Environ. 41, 1762–1775.

    CAS  PubMed  Google Scholar 

  • Liu J., Chen N., Chen F., Cai B., Dal Santo S., Tornielli G. B. et al. 2014 Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics 15, 281–298.

    PubMed  PubMed Central  Google Scholar 

  • Liu J. X., Srivastava R., Che P. and Howell S. H. 2007 Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J. 51, 897–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G., Gao C., Zheng X. and Han B. 2009 Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229, 605–615.

    CAS  PubMed  Google Scholar 

  • Malacarne G., Coller E., Czemmel S., Vrhovsek U., Engelen K., Goremykin J. et al. 2016 The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. J. Exp. Bot. 67, 3509–3522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon S. J., Park H. J., Kim T. H., Kang J. W., Lee J. Y., Cho J. H. et al. 2018 OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One 13, e0206910.

    PubMed  PubMed Central  Google Scholar 

  • Nijhawan A., Jain M., Tyagi A. K. and Khurana J. P. 2008 Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146, 333–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh S. J., Song S. I., Kim Y. S., Jang H. J., Kim S. Y., Kim M. et al. 2005 Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138, 341–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal T., Malhotra N., Chanumolu S. K. and Chauhan R. S. 2015 Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall. Planta 242, 239–258.

    CAS  PubMed  Google Scholar 

  • Pan F., Wu M., Hu W., Liu R., Yan H. and Xiang Y. 2019 Genome-Wide Identification and expression analyses of the bZIP transcription factor genes in moso bamboo (Phyllostachys edulis). Int. J. Mol. Sci. 20, 2203–2224.

    CAS  PubMed Central  Google Scholar 

  • Pasquali G., Erven A. S., Ouwerkerk P. B., Menke F. L. and Memelink J. 1999 The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF. Plant Mol. Biol. 39, 1299–1310.

    CAS  PubMed  Google Scholar 

  • Pieterse C. M. and Van Loon L. C. 2004 NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7, 456–464.

    CAS  PubMed  Google Scholar 

  • Schmittgen T. D. and Livak K. J. 2008 Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108.

    CAS  PubMed  Google Scholar 

  • Shen L., Liu Z., Yang S., Yang T., Liang J., Wen J. et al. 2016 Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. J. Exp. Bot. 67, 2439–2451.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tak H. and Mhatre M. 2013 Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera. Protoplasma 250, 333–345.

    CAS  PubMed  Google Scholar 

  • Thitiratsakul B. and Anprung P. 2014 Prebiotic activity score and bioactive compounds in longan (Dimocarpus longan Lour.): influence of pectinase in enzyme-assisted extraction. J. Food Sci. Technol. 51, 1947–1955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J., Zhou J., Zhang B., Vanitha J., Ramachandran S. and Jiang S. Y. 2011 Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J. Integr. Plant Biol. 53, 212–231.

    CAS  PubMed  Google Scholar 

  • Wang L., Zhu J., Li X., Wang S. and Wu J. 2018 Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis. Gene 651, 152–160.

    CAS  PubMed  Google Scholar 

  • Xiang Y., Tang N., Du H., Ye H. and Xiong L. 2008 Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148, 1938–1952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Y., Wang W., Liu Y., Zhan R. and Chen Y. 2015 Two new flavonol glycosides from Dimocarpus longan leaves. Nat. Prod. Res. 29, 163–168.

    CAS  PubMed  Google Scholar 

  • Yang Z., Sun J., Chen Y., Zhu P., Zhang L., Wu S. et al. 2019 Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genet. 20, 41–58.

    PubMed  PubMed Central  Google Scholar 

  • Zhang F., Fu X., Lv Z., Lu X., Shen Q., Zhang L. et al. 2015 A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol. Plant 8, 163–175.

    CAS  PubMed  Google Scholar 

  • Zhang Y., Zheng S., Liu Z., Wang L. and Bi Y. 2011 Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J. Plant Physiol. 168, 367–374.

    CAS  PubMed  Google Scholar 

  • Zhang Y., Xu Z., Ji A., Luo H. and Song J. 2018 Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza. Acta Pharm. Sin. B. 8, 295–305.

    PubMed  Google Scholar 

  • Zhong X., Xi L., Lian Q., Luo X., Wu Z., Seng S. et al. 2015 The NPR1 homolog GhNPR1 plays an important role in the defense response of Gladiolus hybridus. Plant Cell Rep. 34, 1063–1074.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Young Scholars with Creative Talents at Harbin University of Commerce (2019CX39), and Doctoral Science Foundation (14LG06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zheng.

Additional information

Corresponding editor: Upendra Nongthomba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Xie, T., Yu, X. et al. Characterization of bZIP transcription factors from Dimocarpus longan Lour. and analysis of their tissue-specific expression patterns and response to heat stress. J Genet 99, 69 (2020). https://doi.org/10.1007/s12041-020-01229-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01229-3

Keywords

Navigation