Skip to main content
Log in

Twist-Bend Nematic Phase: Role of Third-Order Legendre Polynomial Term in Chiral Interaction Potential

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Using a mean-field theory, a twist-bend nematic (NTB) phase has been described. In addition to second-order Legendre polynomial term, the chiral interaction potential includes third-order Legendre polynomial term also. It considers the coupling between a nematic director and a pitch axis of the NTB phase. The distortion free energy, order parameter for twist-bend nematic, and orientational distribution function in equilibrium state have been calculated. Based on the free energy minimization, we obtain that the inclusion of third-order Legendre polynomial term in interaction energy makes NTB phase more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H. Takezoe, A. Eremin, Bent-shaped liquid crystals: Structure and physical properties (CRC, Press, 2017)

    Book  Google Scholar 

  2. A. Jakli, O.D. Lavrentovich, J.V. Selinger, Physics of liquid crystals of bent-shaped molecules. Rev. Mod. Phys. 90, 045004 (2018)

    Article  ADS  Google Scholar 

  3. T. Niori, T. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J. Mater. Chem. 6, 1231 (1996)

    Article  Google Scholar 

  4. M. Cestari, S. Diez-Berart, D.A. Dunmur, A. Ferrarini, M.R. de la Fuente, D.J.B. Jackson, D.O. Lopez, G.R. Luckhurst, M.A. Perez-Jubindo, R.M. Richardson, J. Salud, B.A. Timimi, H. Zimmermann, Phys. Rev. E 84, 031704 (2011)

    Article  ADS  Google Scholar 

  5. P.A. Henderson, C.T. Imrie, Liq. Cryst. 38, 1407 (2011)

    Article  Google Scholar 

  6. L. Beguin, J.W. Emsley, M. Lelli, A. Lesage, G.R. Luckhurst, B.A. Timimi, H. Zimmermann, The chirality of a twist–bend nematic phase identified by NMR spectroscopy. J. Phys. Chem. B 116, 7940–7951 (2012)

    Article  Google Scholar 

  7. K. Adlem, M. Copic, G.R. Luckhurst, A. Mertelj, O. Parri, R.M. Richardson, B.D. Snow, B.A. Timimi, R.P. Tuffin, D. Wilkes, Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants. Phys. Rev. E 88, 022503 (2013)

    Article  ADS  Google Scholar 

  8. J. Xiang, S.V. Shiyanovskii, C. Imrie, O.D. Lavrentovich, Electrooptic response of chiral nematic liquid crystals with oblique helicoidal director. Phys. Rev. Lett. 112, 217801 (2014)

    Article  ADS  Google Scholar 

  9. V. Borshch, Y.K. Kim, J. Xiang, M. Gao, A. Jakli, V.P. Panov, J.K. Vij, C.T. Imrie, M.G. Tamba, G.H. Mehl, O.D. Lavrentovich, Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat. Commun. 4, 2635 (2013)

    Article  ADS  Google Scholar 

  10. D. Chen, M. Nakata, R. Shao, M.R. Tuchband, M. Shuai, U. Baumeister, W. Weissflog, D.M. Walba, M.A. Glaser, J.E. Maclennan, N.A. Clark, Twist-bend heliconical chiral nematic liquid crystal phase of an achiral rigid bent-core mesogen. Phys. Rev. E 89, 022506 (2014)

    Article  ADS  Google Scholar 

  11. R. R. R. de Almeida, C. Zhang, O. Parri, S. N. Sprunt and A. Jakli, Liq. Cryst. (2014)

  12. P.K. Challa, V. Borshch, O. Parri, C.T. Imrie, S.N. Sprunt, J.T. Gleeson, O.D. Lavrentovich, A. Jakli, Phys. Rev. E 89(R), 060501 (2014)

    Article  ADS  Google Scholar 

  13. K. Merkel, C. Weich, Z. Ahmed, W. Piecek, G.H. Mehl, Dielectric response of electric-field distortions of the twist-bend nematic phase for LC dimers. J. Chem. Phys. 151, 114908 (2019)

    Article  ADS  Google Scholar 

  14. R. Waker, D. Pociecha, J.M.D. Storey, E. Gorecka, C.T. Imrie, Chem. Eur. J. (2019). https://doi.org/10.1002/chem.201903014

  15. C.J. Yun, M.R. Vengatesan, J.K. Vij, J.K. Song, Appl. Phys. Lett. 106, 173102 (2015)

    Article  ADS  Google Scholar 

  16. V.P. Panov, R. Balachandran, M. Nagaraj, J.K. Vij, M.G. Tamba, A. Kohlmeier, G.H. Mehl, Microsecond linear optical response in the unusual nematic phase of achiral bimesogens. Appl. Phys. Lett. 99, 261903 (2011)

    Article  ADS  Google Scholar 

  17. S.P. Sreenilayam, Y.P. Panarin, J.K. Vij, V.P. Panov, A. Lehmann, M. Poppe, M. Prehm, C. Tschierske, Nat. Commun. 7, 22369 (2016)

    Article  Google Scholar 

  18. V.P. Panov, S.P. Sreenilayam, Y.P. Panarin, J.K. Vij, C.J. Welch, G.H. Mehl, Nano Lett. 17, 7515 (2017)

    Article  ADS  Google Scholar 

  19. R. B. Meyer, in, Les Houches Summer School in Theoretical Physics, eds., R. G. Balian and G. Weil (Gordon and Breach, New York, 1976) p. 273–373; Mol. Cryst. Liq. Cryst. 40, 33 (1977)

  20. I. Dozov, On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys.Lett. 56, 247–253 (2001)

    Article  ADS  Google Scholar 

  21. A. Matsuyama, J. Phys. Soc. Jpn. 85, 114606 (1916)

    Article  ADS  Google Scholar 

  22. J. Shi, H. Sidky, J.K. Whitmer, Novel elastic response in twist-bend nematic models. Soft Matter 15, 8219–8226 (2019). https://doi.org/10.1039/C9SM01395D

    Article  ADS  Google Scholar 

  23. A. Matsuyama, J. Chem. Phys. 139, 174906 (1913)

    Article  ADS  Google Scholar 

  24. A. Matsuyama, J. Chem. Phys. 141, 184903 (1914)

    Article  ADS  Google Scholar 

  25. C. Greco, G.R. Luckhurst, A. Ferrarini, Enantiotopic discrimination and director organization in the twist-bend nematic phase. Phys. Chem. Chem. Phys. 15, 14961 (2013)

    Article  Google Scholar 

  26. K. Adlem, M. Copic, G.R. Luckhurst, A. Mertelj, O. Parri, R.M. Richardson, B.D. Snow, B.A. Timimi, R.P. Tuffin, D. Wilkes, Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants. Phys. Rev. E 88, 022503 (2013)

    Article  ADS  Google Scholar 

  27. R.J. Mandle, C.T. Archbold, J.P. Sarju, J.L. Andrews, J.W. Goodby, Sci. Rep. (2016). https://doi.org/10.1038/serp36682

  28. A. Ferrarini, Liq. Cryst. 44, 45 (2017)

    Google Scholar 

  29. G. Pajak, L. Longa, A. Chrzanowska, in PNAS 10. Nematic twist–bend phase in an external field (2018). https://doi.org/10.1073/pnas.1721786115

    Chapter  Google Scholar 

  30. L. Longa, W. Tomczyk, Twist-bend nematic phase in the presence of molecular chirality. Liq. Cryst. 45, 2074–2085 (2018). https://doi.org/10.1080/02678292.2018.1499148

    Article  Google Scholar 

  31. M. Chiappini, T. Drwenski, R.V. Roij, M. Dijkstra, Phys. Rev. Lett. 123, 068001 (2019)

    Article  ADS  Google Scholar 

  32. Z. Parsouzi, G. Babakhanova, M. Rajabi, R. Saha, P. Gyawali, T. Turiv, H. Wang, A.R. Baldwin, C. Welch, G.H. Mehl, J.T. Gleeson, A. Jakli, O.D. Lavrentovich, S. Sprunt, Pretransitional behavior of viscoelastic parameters at the nematic to twist-bend nematic phase transition in flexiblen-mers. Phys. Chem. Chem. Phys. 21, 13078–13089 (2019)

    Article  Google Scholar 

  33. S.M. Schamid, S. Dhakal, J.V. Selinger, Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals. Phys. Rev. E 87, 052503 (2013)

    Article  ADS  Google Scholar 

  34. S.M. Schamid, D.W. Allender, J.V. Selinger, Predicting a polar analog of chiral blue phases in liquid crystals. Phys. Rev. Lett. 113, 237801 (2014)

    Article  ADS  Google Scholar 

  35. E.G. Virga, Double-well elastic theory for twist-bend nematic phases. Phys. Rev. E 89, 052502 (2014)

    Article  ADS  Google Scholar 

  36. G. Barbero, I.R. Evangelista, M.P. Rosseto, R.S. Zola, I. Lelidis, Phys. Rev. E 92(R), 030501 (2015)

    Article  ADS  Google Scholar 

  37. Y.R. Liu-Liu, Y.M. Shih, C.W. Woo, Molecular theory of cholesteric liquid crystals and cholesteric mixtures. Phys. Rev. A 15, 2550–2557 (1977)

    Article  ADS  Google Scholar 

  38. Y.R. Liu-Liu, Y.M. Shih, C.W. Woo, H.T. Tan Phys, Molecular model for cholesteric liquid crystals. Rev. A 14, 445–450 (1976)

    Article  Google Scholar 

Download references

Funding

We would like to thank the University Grants Commission for non-net research fellowship (SM) and for Senior Research Fellowship (21/06/2015(i)EU-V) (DKG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shri Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Determination of Distortion Free Energy (Fdis)

Appendix: Determination of Distortion Free Energy (Fdis)

In this appendix, we calculate the distortion free energy for higher order Legendre polynomial in chiral interaction. The anisotropic free energy is given by Fani = Fnem + Fd. The distortion free energy is given as

$$ \frac{a^3\beta {F}_d}{V}=\frac{1}{4}{\nu}_L\frac{2}{9}{d}_0^2{\partial}_{\gamma }{Q}_{\alpha \beta}\left(\boldsymbol{r}\right){\partial}_{\gamma }{Q}_{\alpha \beta}\left(\boldsymbol{r}\right)-\kern0.5em \frac{2}{9}{c}_L{d}_0{\varepsilon}_{\alpha \beta \gamma}{Q}_{\mu \beta}\left(\boldsymbol{r}\right){\partial}_{\alpha }{Q}_{\mu \gamma}\left(\boldsymbol{r}\right) $$
(27)

where ∂ = ∂/∂r is the first spatial derivative of the tensor order parameter and εαβγ is the Levi-Civita anti-symmetric tensor of the third rank. By using the tensor order parameter, we get

$$ {\partial}_{\gamma }{Q}_{\alpha \beta}\left(\boldsymbol{r}\right){\partial}_{\gamma }{Q}_{\alpha \beta}\left(\boldsymbol{r}\right)=\frac{9}{2}{S}_L^2{\partial}_{\alpha }{n}_{\beta }{\partial}_{\alpha }{n}_{\beta } $$
(28)

We also have

$$ {\partial}_{\alpha }{n}_{\beta }{\partial}_{\alpha }{n}_{\beta }={\overset{\sim }{k}}_1{\left(\nabla \cdotp \boldsymbol{n}\right)}^2+{\overset{\sim }{k}}_2{\left(n\cdotp \nabla X\ n\right)}^2+{\overset{\sim }{k}}_3{\left(n\ X\nabla X\ n\right)}^2, $$
(29)

where contribution to the free energy due to surface is neglected and the coefficient ki(i = 1, 2, 3) is a dimensionless elastic constant, normalized by the typical value (~ 10−6 dyn).

Of the elastic constant of a pure material, 휙L = 1 with SL = 1.

$$ {\partial}_{\gamma }{Q}_{\alpha \beta}\left(\boldsymbol{r}\right){\partial}_{\gamma }{Q}_{\alpha \beta}\left(\boldsymbol{r}\right)=\frac{9}{2}{S}_L^2\left[\ {\overset{\sim }{k}}_1{\left(\nabla \cdotp \boldsymbol{n}\right)}^2+{\overset{\sim }{k}}_2{\left(n\cdotp \nabla X\ n\right)}^2+{\overset{\sim }{k}}_3{\left(n\ X\nabla X\ n\right)}^2\right] $$
(30)

Using the director n for the NTB phase, we have

$$ {\left(\nabla \cdotp \boldsymbol{n}\right)}^2=0 $$
(31)
$$ {\left(n\cdotp \nabla X\ n\right)}^2={\left({\partial}_z\omega \right)}^2={q}^2{\sin}^4\varepsilon \kern0.5em $$
(32)

And

$$ {\displaystyle \begin{array}{c}{\left(n\ X\nabla X\ n\right)}^2={\left({\partial}_z\omega \right)}^2{\sin}^2\varepsilon\ \left(1-{\sin}^2\varepsilon \right)\\ {}={q}^2{\sin}^2\varepsilon \left(1-{\sin}^2\varepsilon \right)\end{array}} $$
(33)

Substituting Eq. (31), (32), and (33) into Eq. (30), we get

$$ {v}_L{\partial}_{\gamma }{Q}_{\alpha \beta}\left(\boldsymbol{r}\right){\partial}_{\gamma }{Q}_{\alpha \beta}\left(\boldsymbol{r}\right)=\frac{9}{2}{S}_L^2{q}^2{\sin}^2\varepsilon \left[{\overset{\sim }{k}}_2{\sin}^2\varepsilon +{\overset{\sim }{k}}_3\left(1-{\sin}^2\varepsilon \right)\right] $$
(34)

In Eq. (34), the first term is for twist distortion and second term stands for bend distortion.

In Eq. (27), distortion free energy term is

$$ {c}_L{\varepsilon}_{\alpha \beta \gamma}{Q}_{\mu \beta}\left(\boldsymbol{r}\right){\partial}_{\alpha }{Q}_{\mu \gamma}\left(\boldsymbol{r}\right)={c}_L\frac{9}{4}{\overset{\sim }{k}}_2{S}_L^2q{\sin}^2\varepsilon $$
(35)

In above equation, dimensionless elastic constant k2is because of the twist term.

Substituting Eqs. (34) and (35) into Eq. (27), we get

$$ \frac{a^3\beta {F}_d}{V}=\frac{1}{2}{v}_L{S}_L^2\ \left[\frac{1}{2}\left({\overset{\sim }{k}}_2-{\overset{\sim }{k}}_3\right){Q}^2{y}^2+\right(\frac{1}{2}{\overset{\sim }{k}}_3Q-{\overset{\sim }{k}}_2{Q}_0\left(\ {Q}_y\right] $$
(36)

where order parameter is y = sin2ε and the pitch wavenumber is represented by Q = qd0. For N* phase, the dimensionless wavenumber is defined by Q0 = q0d0.

From elastic continuum theory, \( {\overset{\sim }{k}}_{11}=0 \) and

$$ {\overset{\sim }{k}}_{22}=\frac{1}{2}{k}_BT\frac{S_L^2{v}_L{\overset{\sim }{k}}_2}{a} $$
(37)

and for twist elastic constant

$$ {\overset{\sim }{k}}_{33}=\frac{1}{2}{k}_BT\frac{S_L^2{v}_L{\overset{\sim }{k}}_3}{a} $$
(38)

The ratio of both the elastic constant is a constant.

The coupling free energy from Eq. (12) is written as

$$ \frac{a^3\beta {F}_{co}}{V}=-{s}_L{\upgamma}_{\mathrm{L}}\left(1-\frac{3}{2}\ y\right) $$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Gaur, D.K. & Singh, S. Twist-Bend Nematic Phase: Role of Third-Order Legendre Polynomial Term in Chiral Interaction Potential. Braz J Phys 50, 518–524 (2020). https://doi.org/10.1007/s13538-020-00787-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00787-2

Keywords

Navigation