Skip to main content
Log in

Non-absolutely Convergent Generalized Laplacian

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

For possibly discontinuous functions including, for instance, Sobolev functions, we present new Blaschke-Privaloff-type criteria for superharmonicity and harmonicity. This opens the way for introduction of a substantial generalization of the Laplace operator. These potential-theoretic considerations lead to a new kind of non-absolutely convergent integral where the integrand may be a highly oscillating pointwise function or even a distribution-valued function. In turn, this integral gives a precise meaning to some generalized Poisson equations with a wild right hand side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, volume 314 of Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1996)

    Google Scholar 

  2. Aki, K.: A note on the generalized Laplacian operators. Kodai Math. Sem. Rep. 2, 11–12 (1950). {Volume numbers not printed on issues until Vol. 7 (1955)}

    MathSciNet  MATH  Google Scholar 

  3. Armitage, D.H., Gardiner, S.J.: Classical Potential Theory. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London (2001)

    Google Scholar 

  4. Arroyo, A., Llorente, J.G.: On the asymptotic mean value property for planar p-harmonic functions. Proc. Amer. Math. Soc. 144(9), 3859–3868 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Bauer, H.: Der Perronsche Integralbegriff und seine Beziehung zum Lebesgueschen. Monatshefte Math. Phys. 26, 153–198 (1915)

    MathSciNet  MATH  Google Scholar 

  6. Bendová, H., Malý, J.: An elementary way to introduce a Perron-like integral. Ann. Acad. Sci. Fenn. Math. 36(1), 153–164 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Blaschke, W.: Ein Mittelwertsatz und eine kennzeichende Eigenschaft des logaritmischen Potentials. Ber. Ver. Sächs. Akad. Wiss. Leipzig 68, 3–7 (1916)

    Google Scholar 

  8. Blaschke, W.: Mittelwertsatz der Potentialtheorie. Jahresber. Deutsch. Math.-Verein. 27, 157–160 (1918)

    MATH  Google Scholar 

  9. Bonfiglioli, A., Lanconelli, E.: Subharmonic functions in sub-Riemannian settings. J. Eur. Math Soc. (JEMS) 15(2), 387–441 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Bongiorno, B.: The Henstock-Kurzweil integral. In: Handbook of measure theory, vol. I, II, pp. 587–615. North-Holland, Amsterdam (2002)

  11. Brelot, M.: Fonctions sousharmoniques, presque sousharmoniques ou sousmédianes. Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 217, 5–90 (1946)

    MATH  Google Scholar 

  12. Brelot, M.: Éléments de la théorie classique du potentiel, 4th edn. Centre de Documentation Universitaire, Paris (1969)

    MATH  Google Scholar 

  13. Bullen, P.S.: On a theorem of Privaloff. Canad. Math. Bull. 10, 353–359 (1967)

    MathSciNet  MATH  Google Scholar 

  14. De Pauw, T.: Autour du théorème de la divergence. In: Autour du centenaire Lebesgue, volume 18 of Panor. Synthèses, pp 85–121. Soc. Math., France (2004)

  15. De Pauw, T., Pfeffer, W.F.: Distributions for which div v = F has a continuous solution. Comm. Pure Appl. Math. 61(2), 230–260 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Denjoy, A.: Une extension de l’intégrale de M. Lebesgue. C. R. Acad. Sci. Paris Sér. I Math. 154, 859–862 (1912)

    MATH  Google Scholar 

  17. Deny, J.: Les potentiels d’énergie finie. Acta Math. 82, 107–183 (1950)

    MathSciNet  MATH  Google Scholar 

  18. Deny, J., de Lions, J. L.: Les espaces du type Beppo Levi. Ann. Inst. Fourier (Grenoble) 5, 305–370 (1955)

    MathSciNet  MATH  Google Scholar 

  19. Dinghas, A.: Zur Charakterisierung harmonischer und subharmonischer Funktionen durch Mittelungsprozesse. Ann. Acad. Sci. Fenn. Ser. A I(412), 24 (1968)

    MathSciNet  MATH  Google Scholar 

  20. Doob, J.L.: Classical potential theory and its probabilistic counterpart, volume 262 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, New York (1984)

    Google Scholar 

  21. Federer, H., Ziemer, W.P.: The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Univ. Math. J 22, 139–158 (1972/73)

  22. Ferrari, F.: Mean value properties of fractional second order operators. Commun. Pure Appl. Anal. 14(1), 83–106 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Feyel, D.: Espaces de Banach fonctionnels adaptés. Quasi-topologies et balayage. In: Séminaire de Théorie du Potentiel, No. 3 (Paris, 1976/1977), volume 681 of Lecture Notes in Math, pp 81–102. Springer, Berlin (1978)

  24. Fuglede, B.: The quasi topology associated with a countably subadditive set function. Ann. Inst. Fourier (Grenoble) 21(fasc. 1), 123–169 (1971)

    MathSciNet  MATH  Google Scholar 

  25. Hajłasz, P., Liu, Z.: Sobolev spaces, Lebesgue points and maximal functions. J. Fixed Point Theory Appl. 13(1), 259–269 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Inc., Mineola (2006). Unabridged republication of the 1993 original

    MATH  Google Scholar 

  27. Helms, L.L.: Introduction to Potential Theory. Pure and Applied Mathematics, vol. XXII. Wiley-Interscience A Division of John Wiley & Sons, New York-London-Sydney (1969)

    Google Scholar 

  28. Henstock, R.: Definitions of Riemann type of the variational integrals. Proc. London Math. Soc. (3) 11, 402–418 (1961)

    MathSciNet  MATH  Google Scholar 

  29. Hopf, H.: Bemerkungen zur Aufgabe 49. Jahresber. Deutsch. Math.-Verein., 2.Teil 39, 4–6 (1930)

    MATH  Google Scholar 

  30. Jarník, J., Kurzweil, J.: A nonabsolutely convergent integral which admits transformation and can be used for integration on manifolds. Czechoslovak Math. J 35(110, 1), 116–139 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Jarník, J., Kurzweil, J.: A new and more powerful concept of the PU-integral. Czechoslovak Math. J 38(113, 1), 8–48 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Jarník, J., Kurzweil, J., Schwabik, Š.: On Mawhin’s approach to multiple nonabsolutely convergent integral. Časopis Pěst. Mat. 108(4), 356–380 (1983)

    MathSciNet  MATH  Google Scholar 

  33. Jurkat, W.B.: The divergence theorem and Perron integration with exceptional sets. Czechoslovak Math. J 43(118, 1), 27–45 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Khintchine, A.: Sur une extension de l’intégrale de M. Denjoy. C. R. Acad. Sci. Paris Sér. I Math. 162, 287–291 (1916)

    MATH  Google Scholar 

  35. Kozakiewicz, W.: Un théorème sur les opérations et son application à la théorie des laplaciens généralisés. C. R. Soc. Sci. Varsovie 26, 18–24 (1933)

    MATH  Google Scholar 

  36. Kuncová, K., Malý, J.: Non-absolutely convergent integrals in metric spaces. J. Math. Anal Appl. 401(2), 578–600 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7(82), 418–449 (1957)

    MathSciNet  MATH  Google Scholar 

  38. Kurzweil, J.: Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions, Volume 11 of Series in Real Analysis. World Scientific Publishing Co. Pte. Ltd, Hackensack (2012)

    MATH  Google Scholar 

  39. Lindqvist, P., Manfredi, J.: On the mean value property for the p-Laplace equation in the plane. Proc. Amer. Math. Soc. 144(1), 143–149 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Lorentz, G.G.: Über die Dichte des Potentials einer räumlichen Belegung. Math. Z. 51, 262–264 (1948)

    MathSciNet  MATH  Google Scholar 

  41. Lukeš, J., Malý, J., Zajíček, L.: Fine Topology Methods in Real Analysis and Potential Theory, volume 1189 of Lecture Notes in Mathematics. Springer, Berlin (1986)

    MATH  Google Scholar 

  42. Lusin, N.: Sur les propriétés de l’intégrale de M. Denjoy. C. R. Acad. Sci. Paris Sér. I Math. 155, 1475–1478 (1912)

    MATH  Google Scholar 

  43. Malý, J.: Non-absolutely convergent integrals with respect to distributions. Ann. Mat. Pura Appl. (4) 193(5), 1457–1484 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Manfredi, J.J., Parviainen, M., Rossi, J.D.: An asymptotic mean value characterization for p-harmonic functions. Proc. Amer. Math Soc. 138(3), 881–889 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Mawhin, J.: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Math. J 31(106, 4), 614–632 (1981)

    MathSciNet  MATH  Google Scholar 

  46. Netuka, I., Veselý, J.: Mean value property and harmonic functions. In: Classical and Modern Potential Theory and Applications (Chateau de Bonas, 1993), volume 430 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp 359–398. Kluwer Acad. Publ., Dordrecht (1994)

  47. Novikov, A., Pfeffer, W.F.: An invariant Riemann type integral defined by figures. Proc. Amer. Math. Soc. 120(3), 849–853 (1994)

    MathSciNet  MATH  Google Scholar 

  48. O’Farrell, A.G.: A characterisation of harmonic functions. Proc. Roy. Irish Acad. Sect. A 78(5), 33–36 (1978)

    MathSciNet  MATH  Google Scholar 

  49. Perron, O.: Über den Integralbegriff. Sitzungsber Heidelberg Akad. Wiss. A16, 1–16 (1914)

    MATH  Google Scholar 

  50. Pfeffer, W.F.: The Gauss-Green theorem. Adv. Math. 87(1), 93–147 (1991)

    MathSciNet  MATH  Google Scholar 

  51. Pfeffer, W.F.: The Riemann Approach to Integration. Local Geometric Theory, volume 109 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  52. Pfeffer, W.F.: Derivation and Integration Cambridge Tracts in Mathematics, volume 140 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  53. Potts, D.H.: A note on the operators of Blaschke and Privaloff. Bull. Amer. Math Soc. 54, 782–787 (1948)

    MathSciNet  MATH  Google Scholar 

  54. Privaloff, I.: Sur les fonction harmoniques. Mat. Sbornik 32, 464–469 (1924/25)

  55. Privaloff, I.: On a theorem of S. Saks. Rec. Math. [Mat. Sbornik] N.S. 9(51), 457–460 (1941)

    MathSciNet  MATH  Google Scholar 

  56. Privaloff, I.: Quelques applications de l’opérateur généralisé de Laplace. Rec. Math. [Mat. Sbornik] N. S. 11(53), 149–154 (1942)

    MathSciNet  Google Scholar 

  57. Privaloff, I.I.: Quelques applications de l’opérateur généralisé de Laplace. C. R. (Doklady) Acad. Sci. URSS (N.S.) 31, 104–105 (1941)

    MathSciNet  MATH  Google Scholar 

  58. Radó, T.: Subharmonic functions. Springer, Berlin (1937)

    MATH  Google Scholar 

  59. Reade, M.: Some remarks on subharmonic functions. Duke Math. J. 10, 531–536 (1943)

    MathSciNet  MATH  Google Scholar 

  60. Rudin, W.: Integral representation of continuous functions. Trans. Amer. Math. Soc. 68, 278–286 (1950)

    MathSciNet  MATH  Google Scholar 

  61. Rudin, W.: Green’s second identity for generalized Laplacians. Proc. Amer. Math. Soc. 2, 970–972 (1951)

    MathSciNet  MATH  Google Scholar 

  62. Rudin, W.: A theorem on subharmonic functions. Proc. Amer. Math. Soc. 2, 209–212 (1951)

    MathSciNet  MATH  Google Scholar 

  63. Saks, S.: Note on defining properties of harmonic functions. Bull. Amer. Math. Soc. 38(6), 380–382 (1932)

    MathSciNet  MATH  Google Scholar 

  64. Saks, S.: On the operators of Blaschke and Privaloff for subharmonic functions. Rec. Math. [Mat. Sbornik] N.S. 9(51), 451–456 (1941)

    MathSciNet  MATH  Google Scholar 

  65. Schwabik, Š.: Generalized Ordinary Differential Equations, volume 5 of Series in Real Analysis. World Scientific Publishing Co., Inc., River Edge (1992)

    MATH  Google Scholar 

  66. Shapiro, V.L.: The approximate divergence operator. Proc. Amer. Math. Soc. 20(1), 55–60 (1969)

    MathSciNet  MATH  Google Scholar 

  67. Smyrnélis, E. P.: Mesures normales et fonctions harmoniques. Bull. Sci. Math. (2) 95, 197–207 (1971)

    MathSciNet  MATH  Google Scholar 

  68. Szpilrajn, E.: Remarques sur les fonctions sousharmoniques. Ann. of Math. 34, 588–594 (1933)

    MathSciNet  MATH  Google Scholar 

  69. Zaremba, S.: Contribution à la théorie de l’équation fonctionelle de la physique. Rend. Circ. Mat. Palermo 19, 140–150 (1905)

    MATH  Google Scholar 

Download references

Acknowledgments

The problem of sufficiency of Blaschke-Privaloff condition for Sobolev functions was suggested by Antonio Cordoba. We are grateful to him, Joan Verdera and Tony O’Farrell for fruitful discussion and motivation.

We thank the referee for careful reading and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Malý.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. M. has been supported by the grant GA Č R P201/18-07996S of the Czech Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malý, J., Netuka, I. Non-absolutely Convergent Generalized Laplacian. Potential Anal 55, 539–562 (2021). https://doi.org/10.1007/s11118-020-09868-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-020-09868-y

Keywords

Mathematics Subject Classification (2010)

Navigation