Skip to main content
Log in

Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Inconel 718 is a Ni-Fe-based superalloy widely used in aerospace engines because of its excellent mechanical properties. However, the inferior stability of the γ″ phase limits the application of Inconel 718, which coarsens rapidly at temperatures greater than 650°C. Further improving the temperature tolerance of Inconel 718 requires optimization of the phase configuration via modification of the alloy’s chemical composition. Given the aforementioned objective, this work was conducted to study the precipitation behavior and thermal stability of the strengthening phases with various structures in modified Inconel 718 alloys by tailoring the Al/Ti ratio. With increasing Al/Ti ratio, three particle configurations were formed: γ′/γ″ composite, isolated γ′, and γ′/γ″/γ′ composite particles. The results of aging tests demonstrate that the isolated γ′ and the γ′/γ″/γ′ composite structure exhibited better thermal stability at temperature as high as 800°C. The isolated γ′ exhibited a reduced coarsening rate compared with the γ′/γ″/γ′ composite particles because the isolated γ′ phase was rich in Al, Ti, and Nb. However, the γ′/γ″ composite particles coarsened and decomposed rapidly during aging at temperatures greater than 700°C because of the lower stability resulting from the larger number of γ″ particles. The obtained results provide necessary data for the compositional optimization of novel 718-type alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.C. Liu, Q.Y. Guo, C. Li, Y.P. Mei, X.S. Zhou, Y. Huang, and H.J. Li, Recent progress on evolution of precipitates in Inconel 718 superalloy, Acta Metall. Sin., 52(2016), No. 10, p. 1259.

    CAS  Google Scholar 

  2. X. Zhang, H.W. Li, M. Zhan, Z.B. Zheng, J. Gao, and G.D. Shao, Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations, J. Mater. Sci. Technol., 36(2020), p. 79.

    Article  Google Scholar 

  3. H.J. Zhang, C. Li, Y.C. Liu, Q.Y. Guo, and H.J. Li, Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy, Mater. Sci. Eng. A, 677(2016), p. 515.

    Article  CAS  Google Scholar 

  4. H.J. Zhang, C. Li, Y.C. Liu, Q.Y. Guo, Y. Huang, H.J. Li, and J.X. Yu, Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation & isothermal treatment, J. Alloys Compd., 716(2017), p. 65.

    Article  CAS  Google Scholar 

  5. H.J. Zhang, C. Li, Q.Y. Guo, Z.Q. Ma, Y. Huang, H.J. Li, and Y.C. Liu, Delta precipitation in wrought Inconel 718 alloy; the role of dynamic recrystallization, Mater. Charact., 133(2017), p. 138.

    Article  CAS  Google Scholar 

  6. K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889.

    Article  CAS  Google Scholar 

  7. Y. Han, P. Deb, and M.C. Chaturvedi, Coarsening behaviour of γ″-and γ′-particles in Inconel alloy 718, Met. Sci., 16(1982), No. 12, p. 555.

    Article  CAS  Google Scholar 

  8. K. Sano, N. Oono, S. Ukai, S. Hayashi, T. Inoue, S. Yamashita, and T. Yoshitake, γ″-Ni3Nb precipitate in Fe-Ni base alloy, J. Nucl. Mater., 442(2013), No. 1–3, p. 389.

    Article  CAS  Google Scholar 

  9. C.K.L. Davies, P. Nash, and P.N. Steven, The effect of volume fraction of precipitate on Ostwald ripening, Acta Metall., 28(1980), No. 2, p. 179.

    Article  CAS  Google Scholar 

  10. J. Wu, Y.C. Liu, C. Li, Y.T. Wu, X.C. Xia, and H.J. Li, Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents, Acta Metall. Sin., 56(2020), No. 1, p. 21.

    Google Scholar 

  11. J.P. Collier, S.H. Wong, J.K. Tien, and J.C. Phillips, The effect of varying AI, Ti, and Nb content on the phase stability of INCONEL 718, Metall. Trans. A, 19(1988), No. 7, p. 1657.

    Article  Google Scholar 

  12. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Precipitation and room temperature deformation behavior of Inconel 718, [in] Proceedings of Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 1994, p. 419.

  13. E.C. Guo and F.Q. Xu, Superalloy 718—Metallurgy and Applications, [in] Proceedings of the International Symposium on the Metallurgy and Applications of Superalloy 718, Pittsburgh, 1989, p. 567.

  14. J.X. Dong, X.S. Xie, and S.H. Zhang, Enhancements of thermal structure stability in Ni-base superalloy, Scr. Metall. Mater., 28(1993), No. 12, p. 1477.

    Article  CAS  Google Scholar 

  15. Y.L. Shao, J. Xu, H. Wang, Y.W. Zhang, J. Jia, J.T. Liu, H.L. Huang, M. Zhang, Z.C. Wang, H.F. Zhang, and B.F. Hu, Effect of Ti and Al on microstructure and partitioning behavior of alloying elements in Ni-based powder metallurgy superalloys, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 500.

    Article  CAS  Google Scholar 

  16. D. Zhao and P.K. Chaudhury, Effect of starting grain size on asdeformed microstructure in high temperature deformation of alloy 718, [in] Proceedings of Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 1994, p. 303.

  17. X.S. Xie, G.L. Wang, J.X. Dong, C.M. Xu, W.D. Cao, and R.L. Kennedy, Structure stability study on a newly developed nickel-base superalloy—Allvac® 718Plus™, [in] Proceedings of the Sixth International Symposium on Superalloys 718, 625, 706 and Derivatives, Pittsburgh, 2005, p. 179.

  18. S.H. Fu, J.X. Dong, M.C. Zhang, and X.S. Xie, Alloy design and development of INCONEL718 type alloy, Mater. Sci. Eng. A, 499(2009), No. 1–2, p. 215.

    Article  Google Scholar 

  19. J.P. Collier, A.O. Selius, and J.K. Tien, On developing a microstructurally and thermally stable iron-nickel base superalloy, [in] Superalloys 1988, Warrendale, 1988, p. 43.

  20. R.B. Bhavsar, A. Collins, and S. Silverman, Use of alloy 718 and 725 in oil and gas industry, [in] Proceedings of the Fifth International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 2001, p. 47.

  21. J.F. Radavich and D.J. Meyers, Thermomechanical processing of P/M alloy 718, [in] Superalloys 1984, Pittsburgh, 1984, p. 347.

  22. J.F. Radavich and W.H. Couts, Factors affecting delta phase precipitation and growth at hot work temperatures for direct aged IN718, [in] Superalloys 1984, Pittsburgh, 1984, p. 497.

  23. S. Antonov, M. Detrois, R.C. Helmink, and S. Tin, Precipitate phase stability and compositional dependence on alloying additions in γ-γ′-δ—η Ni-base superalloys, J. Alloys Compd., 626(2015), p. 76.

    Article  CAS  Google Scholar 

  24. N. Paton, T. Cabral, K. Bowen, and T. Tom, Spraycast-X IN718 processing benefits, [in] Proceedings of the Fourth International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Warrendale, 1997, p. 1.

  25. R. Cozar and A. Pineau, Morphology of γ′ and γ″ precipitates and thermal stability of inconel 718 type alloys, Metall. Trans., 4(1973), p. 47.

    Article  CAS  Google Scholar 

  26. S.T. Wlodek and R.D. Field, The effect of long time exposure on alloy 718, [in] Proceedings of Third International Symposium on Superalloys 718, 625, 706 and Various Derivatives, Pittsburgh, 1994, p. 659.

  27. C. Ruiz, A. Obabueki, and K. Gillespie, Evaluation of the microstructure and mechanical properties of delta processed alloy 718, [in] Superalloy 1992, Warrendale, 1992, p. 33.

  28. J. He, G. Han, S. Fukuyama, and K. Kokogawa, Interfaces in a modified Inconel 718 with compact precipitates, Acta Mater., 46(1998), No. 1, p. 215.

    Article  CAS  Google Scholar 

  29. A.J. Ardell, Precipitation hardening, Metall. Trans. A, 16(1985), p. 2131.

    Article  Google Scholar 

  30. M.K. Miller, S.S. Babu, and M.G. Burke, Comparison of the phase compositions in alloy 718 measured by atom probe tomography and predicted by thermodynamic calculations, Mater. Sci. Eng. A, 327(2002), No. 1, p. 84.

    Article  Google Scholar 

  31. P.J. Phillips, D. Mcallister, Y.P. Gao, D.C. Lv, R.E.A. Williams, B. Peterson, Y.Z. Wang, and M.J. Mills, Nano γ′/γ″ composite precipitates in Alloy 718, Appl. Phys. Lett., 100(2012), art. No. 211913.

  32. Q.Y. Guo, Y.M. Li, B. Chen, R. Ding, L.M. Yu, and Y.C. Liu. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel, Acta Metall. Sin., 2020. https://doi.org/10.11900/0412.1961.2020.00109.

  33. A.J. Detor, R. DiDomizio, R. Sharghi-Moshtaghin, N. Zhou, R.P. Shi, Y.Z. Wang, D.P. McAllister, and M.J. Mills, Enabling large superalloy parts using compact coprecipitation of γ′ and γ″, Metall. Mater. Trans. A, 49(2018), No. 3, p. 708.

    Article  CAS  Google Scholar 

  34. K. Kulawik, P.A. Buffat, A. Kruk, A.M. Wusatowska-Sarnek, and A. Czyrska-Filemonowicz, Imaging and characterization of γ′ and γ″ nanoparticles in Inconel 718 by EDX elemental mapping and FIB-SEM tomography, Mater. Charact., 100(2015), p. 74.

    Article  CAS  Google Scholar 

  35. N. Zhou, C. Shen, M.J. Mills, J. Li, and Y.Z. Wang, Modeling displacive-diffusional coupled dislocation shearing of γ′ precipitates in Ni-base superalloys, Acta Mater., 59(2011), No. 9, p. 3484.

    Article  CAS  Google Scholar 

  36. W.T. Geng, D.H. Ping, Y.F. Gu, C.Y. Cui, and H. Harada, Stability of nanoscale co-precipitates in a superalloy: A combined first-principles and atom probe tomography study, Phys. Rev. B, 76(2007), art. No. 224102.

  37. X.S. Xie, S.H. Fu, S.Q. Zhao, and J.X. Dong, The precipitation strengthening effect of Nb, Ti and Al in cast/wrought Ni-base superalloys, Mater. Sci. Forum, 638–642(2010), p. 2363.

    Article  Google Scholar 

  38. A.K. Jena and M.C. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys, J. Mater. Sci., 19(1984), No. 10, p. 3121.

    Article  CAS  Google Scholar 

  39. W. Hume-Rothery, The Engel-Brewer theories of metals and alloys, Prog. Mater. Sci., 13(1968), p. 229.

    Article  Google Scholar 

  40. J. Wu, C. Li, Y.C. Liu, Y.T. Wu, Q.Y. Guo, H.J. Li, and H.P. Wang, Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy, Mater. Sci. Eng. A, 743(2019), p. 623.

    Article  CAS  Google Scholar 

  41. M.Q. Wang, J.H. Du, Q. Deng, Z.L. Tian, and J. Zhu, Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus, J. Alloys Compd., 701(2017), p. 635.

    Article  CAS  Google Scholar 

  42. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Some aspects of the precipitation of metastable intermetallic phases in Inconel 718, Metall. Trans. A, 23(1992), No. 7, p. 2015.

    Article  Google Scholar 

  43. M. Sundararaman and P. Mukhopadhyay, Overlapping of γ′ precipitate variants in Inconel 718, Mater. Charact., 31(1993), No. 4, p. 191.

    Article  CAS  Google Scholar 

  44. C. Slama, C. Servant, and G. Cizeron, Aging of the Inconel 718 alloy between 500 and 750°C, J. Mater. Res., 12(1997), No. 9, p. 2298.

    Article  CAS  Google Scholar 

  45. Y.C. Liu, H.J. Zhang, Q.Y. Guo, X.S. Zhou, Z.Q. Ma, Y. Huang, and H.J. Li, Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency, Acta Metall. Sin., 54(2018), No. 11, p. 1653.

    CAS  Google Scholar 

  46. Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, J. Wu, and H.J. Li, Coarsening behavior of γ′ precipitates in the γ′ + γ area of a Ni3Al-based alloy, J. Alloys Compd., 771(2019), p. 526.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51474156 and U1660201) and the National High Technology Research and Development Program of China (No. 2015AA042504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Li, Hong-jun Zhang or Yong-chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Li, C., Zhang, Hj. et al. Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations. Int J Miner Metall Mater 27, 1123–1132 (2020). https://doi.org/10.1007/s12613-019-1949-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1949-8

Keywords

Navigation